Members Can Post Anonymously On This Site
Falcon 9 | Overview
-
Similar Topics
-
By NASA
NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with about 6,700 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
This launch is the 32nd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 12th SpaceX launch under the Commercial Resupply Services-2 (CRS) contract. The first 20 launches were under the original resupply services contract.
NASA’s live launch coverage will begin at 3:55 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
NASA’s SpaceX 32nd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA’s SpaceX 32nd commercial resupply mission will launch from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Arrival & Departure
The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the zenith port of the station’s Harmony module at approximately 8:20 a.m. Tuesday, April 22. Live coverage NASA’s coverage of the rendezvous and docking will begin at 6:45 a.m on NASA+. NASA astronaut Jonny Kim, Expedition 73 commander and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will monitor the arrival of the spacecraft, which will stay docked to the orbiting laboratory for about one month before splashing down and returning critical science and hardware to teams on Earth.
Astronauts Jonny Kim of NASA and Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
Robotic Spacecraft Guidance
Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites.NASA Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a NASA developed, vision-based sensor to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
Protection From Particles
The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success. NASA During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors to determine which is best suited to protect crew health and ensure mission success.
The investigation also tests a device for distinguishing between smoke and dust. Aboard the orbital outpost, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
Next-Generation Pharmaceutical Nanostructures
The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. NASA The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
Better Materials, Better Drugs
The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials.NASA The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
Helping Plants Grow
The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis.NASA The Rhodium USAFA NIGHT payload examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use.
The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
Atomic Clocks in Space
An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity.NASA An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
Cargo Highlights
NASA’s SpaceX 32nd commercial resupply mission will carry about 6,700 pounds of cargo to the International Space Station.NASA Hardware
Launch:
Catalytic Reactor – The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This unit failed in orbit and is being returned for analysis and refurbishment. This unit is being launched as an in-orbit spare.
Food Reach Tool Assembly – An L-shaped, hand-held tool that allows crew members to reach packages in the back of the food warmer without having to insert their hands. This tool is launching to replace a unit in orbit. Reducer Cylinder Assembly – A cylinder tank that provides 15 minutes of oxygen to a crew member in case of an emergency. Launching two units as in-orbit spares. Thermal Expansion Device – A device used to allow for thermal expansion of water within the Hydrogen Dome while it is being removed and replaced. Launching to maintain minimum in-orbit spares. Return:
Urine Processor Assembly Pressure Control and Pump Assembly – This multi-tube purge pump enables the removal of non-condensable gas and water vapor from the distillation assembly within the greater urine processing assembly subsystem. This unit is returning to the ground for repair and refurbishment in support of the legacy environmental control and life support system fleet. Assembly Contingency Transmitter Receiver Assembly – A part of the S-Band Radio Frequency Group, this assembly is a pressurized enclosure that contains electronics for this upper-level assembly. The Radio Frequency Group is used for command, control, and transmission communication for the space station. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during US EVA 92 and will return for repair. High Gain Antenna Feed Assembly – Part of the S-Band Radio Frequency Group, this system features a two-axis, gimballed assembly with a pedestal and a large horn antenna. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair. Low Gain Antenna Sub-Assembly – Part of the S-Band Radio Frequency Group, this sub-assembly consists of a helix antenna that provides a wide field of signal transmission capability. It was retrieved by NASA astronauts Suni Williams and Butch Wilmore during U.S. spacewalk 92 and will return for repair. Planar Reflector Assembly – With an aluminum base and reflective element, visiting spacecraft reflect a laser to compute relative range, velocity, and attitude to the space station. This broken unit was retrieved and replaced by NASA astronaut Suni Williams during U.S. spacewalk 91 and will return for repair. Multifiltration Bed – Supporting the water processor assembly, this spare unit will continue the International Space Station program’s effort to replace a degraded fleet of units in-orbit that improve water quality through a single bed. This unit will return for refurbishment and re-flight. Watch and Engage
Live coverage of the launch from NASA Kennedy will air at 3:55 a.m. on NASA+..
For additional information on the mission, visit: https://www.nasa.gov/mission/nasas-spacex-crs-32/
View the full article
-
By NASA
NASA’s Northrop Grumman 21st commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.NASA NASA’s Northrop Grumman 21st commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:28 a.m. EDT on Saturday, Aug. 3, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with more than 8,200 pounds of supplies, the Cygnus cargo spacecraft, carried on the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 21st Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency.
Live launch coverage will begin at 11:10 a.m. and stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms.
Learn more at: www.nasa.gov/northropgrumman
Northrop Grumman S.S. Richard “Dick” Scobee
NASA selected Richard Scobee as an astronaut in 1978. Scobee flew as a pilot of STS 41-C and was the commander of STS 51-L. The STS 51-L crew, including Scobee, died on January 28, 1986, when space shuttle Challenger exploded after launch.NASA Arrival & Departure
The Cygnus spacecraft will arrive at the orbiting laboratory on Monday, Aug. 5, filled with supplies, hardware, and critical materials to directly support dozens of scientific and research investigations during Expeditions 71 and 72. NASA astronaut Matthew Dominick will capture Cygnus using the station’s robotic arm, and NASA astronaut Jeanette Epps will act as backup.
After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend almost six months connected to the orbiting laboratory before departing in January 2025. Cygnus also provides the operational capability to reboost the station’s orbit.
Live coverage of Cygnus’ arrival will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
NASA astronauts Matthew Dominick and Jeanette Epps will be on duty during the Cygnus spacecraft’s approach and rendezvous. Dominick will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Epps monitors the vehicle’s arrival.NASA Research Highlights
Scientific investigations traveling in the Cygnus spacecraft include tests of water recovery technology and a process to produce blood and immune stem cells in microgravity, studies of the effects of spaceflight on engineered liver tissue and microorganism DNA, and live science demonstrations for students.
Gravitational Effects on Filtration Systems
The Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.NASA The Packed Bed Reactor Experiment: Water Recovery Series investigates how gravity affects two-phase flow or simultaneous movement of gas and liquid through porous media. Teams will evaluate eight different test articles representing components found in the space station’s water processor or urine processor to understand two-phase flows for both liquid and gas in microgravity.
Packed bed reactors are structures that use “packing” of objects, usually pellet-like catalysts, of various shapes and materials to increase contact between different phases of fluids. These systems are used for a variety of applications such as water recovery, thermal management, and fuel cells, and the experiment develops a set of guidelines and tools to optimize their design and operation for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems.
Balloon Sounds in Space
The Office of STEM Engagement’s Next Gen STEM Project, STEMonstrations, that will demonstration the effects centripetal force has on sounds during spaceflight.NASA’s Office of STEM Engagement STEMonstrations, as part of NASA’s Next Gen STEM (science, technology, engineering, and mathematics) Project, are performed and recorded by astronauts on the space station. Each NASA STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students.
Astronauts will demonstrate centripetal force on the space station using a penny, a hexnut, and two clear balloons. The penny and the hexnut are whirled inside of the inflated balloon to compare the sounds made in a microgravity environment.
Cell Production on Station
The production of blood and immune stem cells on the space station with the BioServe In-Space Cell Expansion Platform (BICEP).NASA In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) tests hardware to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers.
Researchers use BioServe In-Space Cell Expansion Platform, a stem cell expansion bioreactor designed to expand the stem cells three hundredfold without the need to change or add new growth media.
Someone in the United States is diagnosed with a blood cancer about every three minutes. Treating patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells.
Spaceflight Effects on DNA
The Rotifer-B2 investigation on the Internation Space Station explores the effects of spaceflight on DNA (deoxyribonucleic acid) repair mechanisms.ESA (European Space Agency) Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA (deoxyribonucleic acid) repair mechanisms in a microscopic organisms called bdelloid rotifer, or Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive.
Researchers culture rotifers, microorganisms that inhabit mainly freshwater aquatic environments, in an incubator facility on the space station. After exposure to microgravity conditions, the samples provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth.
Bioprinting Tissue
The Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) investigation used to conduct bioprinting of tissue on the space station. NASA Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) examines engineered liver tissue constructs that contain blood vessels. Researchers aim to learn more about the progression of tissue and development of blood vessels in engineered tissues on the space station.
The experiment observes how bioprinted liver tissue behaves in space and whether microgravity causes changes in cell shape, size, and volume. The formation of tissue structures and vascular linings also are studied to ensure proper structure generation in orbit. Bioprinting in microgravity may enable the manufacturing of high-quality tissues and organs that are difficult to maintain on the ground, which could help advance space-based production of tissues and functional organs to treat patients on Earth.
Cargo Highlights
SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station.
NASA’s Northrop Grumman 21st commercial resupply mission will carry more than 8,500 pounds (3,856 kilograms) of cargo to the International Space Station.NASA Hardware
International Space Station Roll Out Solar Array Modification Kit 8 – This upgrade kit consists of power cables and large structural components such as a backbone, mounting brackets, and two sets of struts. This kit will support the installation of the eighth set of roll out solar arrays located on the S6 truss segment of orbiting laboratory in 2025. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power.
Plant Habitat Environmental Control System – The environmental control system is a component of the Advanced Plant Habitat and controls the temperature, humidity, and air flow in the growth chamber. The habitat is an enclosed, fully automated plant growth facility that will conduct plant bioscience research in orbit for up to 135 days and complete at least one year of continuous operation without maintenance.
Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the rate of angular motion of the space station. The assembly is integrated into the enclosure housing on ground to protect the hardware for launch and in-orbit storage. This unit will serve as an in-orbit spare.
European Enhanced Exploration Exercise Device & Vibration Isolation and Stabilization System (E4D VIS) Assembly Kit – This assembly kit consists of fasteners, clips, and labels to be used during the in-orbit assembly projected to be completed in mid-2025. ESA and the Danish Aerospace Company developed the E4D to address the challenge of preventing muscle and bone deterioration during long space missions. Some key features of E4D are resistive exercise, cycling ergonomic exercise, rowing, and rope pulling.
X-Y Rotation Axis Launch Configuration – This assembly consists of the X-Y-Rotational and Translational subassemblies in the flight configuration and adds the launch stabilization hardware to protect the various axes of motions for the transport to the space station. Once in orbit, the stabilizing hardware will be discarded, and the remaining assembly will then be installed into the Columbus module location with other subassemblies to provide a base for the E4D exercise device.
Pressure Control and Pump Assembly – This assembly evacuates the Distillation Assembly at startup, periodically purges non-condensable gases and water vapor, and pumps them into the Separator Plumbing Assembly as part of the Urine Processing Assembly. This unit will serve as an in-orbit spare to ensure successful urine processing operation capability without interruption.
Resupply Water Tanks – The resupply water tanks are cylindrical composite fibrewound pressure tanks that provide stored potable water for the space station.
NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS Maintenance Kit is comprised of two separate assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized for launch with Nitrogen gas. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station.
Tungsten Plates – A total of 14 tungsten plates will serve as the counter mass of the Vibration Isolation & Stabilization System designed to integrate with the European Enhanced Exercise Device.
Watch and Engage
Live coverage of the launch from Cape Canaveral Space Force Station will stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Coverage will begin at 11:10 a.m. on Aug. 3.
Live coverage of Cygnus’ arrival at the space station will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A steel model of a hypersonic vehicle and sensor in front of a window in a wind tunnel labeled the 20 inch Mach 6 Tunnel. Vehicles that travel at hypersonic speeds fly faster than five times the speed of sound. NASA studies the fundamental science of hypersonics to understand it better and applies this understanding to enable point-to-point and space access hypersonic vehicles. These vehicles would use airbreathing engines, which utilize oxygen in the atmosphere. In the long term, NASA envisions reusable hypersonic vehicles with efficient engines for routine flight across the globe.
Vision: Enable routine, reusable, airbreathing hypersonic flight
Mission: Advance core capabilities and critical technologies underpinning the mastery of hypersonic flight to support U.S. supremacy in hypersonics
Approach: Conduct fundamental and applied research to enable a broad spectrum of hypersonic systems and missions
Artist rendering of a high-speed point-to-point vehicle.NASA Langley In the coming decade, NASA envisions the development of enabling technologies for a first-generation reusable airbreathing vehicle capable of cruising at hypersonic speeds. This work supports potential emerging markets in high-speed flight.
By 2050, NASA envisions the development of a next-generation reusable hypersonic vehicle that could serve as the first stage in a two-stage space access vehicle.
Unique Hypersonics Facilities and Expertise
NASA maintains unique facilities, laboratories, and subject matter experts who investigate fundamental and applied research areas to solve the challenges of hypersonic flight. The Hypersonic Technology project coordinates closely with partners in industry, academia, and other government agencies to leverage relevant data sets to validate computational models. These partners also utilize NASA expertise, facilities, and computational tools. Partnerships are critical to advancing the state of the art in hypersonic flight.
Read More About the Hypersonic Technology Project Facebook logo @NASA@NASAAero@NASA_es @NASA@NASAAero@NASA_es Instagram logo @NASA@NASAAero@NASA_es Linkedin logo @NASA Explore More
2 min read Hypersonics Technical Challenges
Article 29 mins ago 2 min read Hypersonic Research Topics
Article 30 mins ago 2 min read High-Speed Market Studies
Article 3 days ago Keep Exploring Discover Related Topics
Technology Transfer & Spinoffs
Small Business Innovation Research (SBIR) / Small Business Technology Transfer (STTR)
Manufacturing and Materials
Why Go to Space
Share
Details
Last Updated Jun 21, 2024 EditorJim BankeContactShannon Eichornshannon.eichorn@nasa.gov Related Terms
Hypersonic Technology Advanced Air Vehicles Program View the full article
-
By NASA
NASA’s Northrop Grumman 20th commercial resupply mission will launch atop a SpaceX Falcon 9 rocket to deliver science and supplies to the International Space Station.NASA NASA’s Northrop Grumman 20th commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. NASA NASA, Northrop Grumman, and SpaceX are targeting 12:29 p.m. EST on Monday, Jan. 29, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. Filled with more than 7,800 pounds of supplies, the Cygnus cargo spacecraft, carried atop the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 20th Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency. The backup launch opportunity will be at 12:07 p.m. Tuesday, Jan. 30.
Live launch coverage will begin at 12:15 p.m. and air on NASA+, NASA Television, the NASA app, YouTube, and on the agency’s website, with prelaunch events starting Wednesday, Jan. 24. Learn how to stream NASA TV through a variety of platforms
Learn more at: nasa.gov/northropgrumman
Northrop Grumman S.S. Patricia “Patty” Hilliard Robertson
Patricia Robertson was selected as a NASA astronaut in 1998 and scheduled to fly to the International Space Station in 2002, before her untimely death in 2001 from injuries sustained in a private plane crash.NASA Arrival & Departure
The Cygnus spacecraft will arrive at the orbiting laboratory at 3:35 a.m. Wednesday, Jan. 31, filled with supplies, hardware, and critical materials to directly support dozens of science and research investigations during Expeditions 70 and 71. NASA astronaut Jasmin Moghbeli will capture Cygnus using the station’s robotic arm, and NASA astronaut Loral O’Hara will act as backup.
After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend about six months connected to the orbiting laboratory before departing in May. Cygnus also provides the operational capability to reboost the station’s orbit.
After departure, the Kentucky Re-entry Probe Experiment-2 (KREPE-2), stowed inside Cygnus, will take measurements to demonstrate a thermal protection system for spacecraft and their contents during re-entry in Earth’s atmosphere, which can be difficult to replicate in ground simulations.
Live coverage of Cygnus’ arrival will begin at 2 a.m., Wednesday, Jan. 31.
NASA astronauts Jasmin Moghbeli and Loral O’Hara will be on duty during the Cygnus cargo craft’s aproach and rendezvous. Moghbeli will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as O’Hara monitors the vehicle’s arrival.NASA Research Highlights
Scientific investigations traveling in the Cygnus spacecraft include tests of a 3D metal printer, semiconductor manufacturing, and thermal protection systems for re-entry to Earth’s atmosphere.
3D Printing in Space
Samples produced by the Metal 3D Printer prior to launch to the space station.ESA (European Space Agency) An investigation from ESA (European Space Agency), Metal 3D Printer tests additive manufacturing or 3D printing of small metal parts in microgravity.
“This investigation provides us with an initial understanding of how such a printer behaves in space,” said Rob Postema of ESA. “A 3D printer can create many shapes, and we plan to print specimens, first to understand how printing in space may differ from printing on Earth and second to see what types of shapes we can print with this technology. In addition, this activity helps show how crew members can work safely and efficiently with printing metal parts in space.”
Results could improve understanding of the functionality, performance, and operations of metal 3D printing in space, as well as the quality, strength, and characteristics of the printed parts. Resupply presents a challenge for future long-duration human missions. Crew members could use 3D printing to create parts for maintenance of equipment on future long-duration spaceflight and on the Moon or Mars, reducing the need to pack spare parts or to predict every tool or object that might be needed, saving time and money at launch.
Advances in metal 3D printing technology also could benefit potential applications on Earth, including manufacturing engines for the automotive, aeronautical, and maritime industries and creating shelters after natural disasters.
Semiconductor Manufacturing in Microgravity
The gas supply modules and production module for Redwire’s MSTIC investigation.Redwire Manufacturing of Semiconductors and Thin-Film Integrated Coatings (MSTIC) examines how microgravity affects thin films that have a wide range of uses.
This technology could enable autonomous manufacturing to replace the many machines and processes currently used to make a wide range of semiconductors, potentially leading to the development of more efficient and higher-performing electrical devices.
Manufacturing semiconductor devices in microgravity also may improve their quality and reduce the materials, equipment, and labor required. On future long-duration missions, this technology could provide the capability to produce components and devices in space, reducing the need for resupply missions from Earth. The technology also has applications for devices that harvest energy and provide power on Earth.
Modeling Atmospheric Re-Entry
An artist’s rendering of one of the Kentucky Re-entry Probe Experiment-2 (KREPE-2) capsules during re-entry.University of Kentucky Scientists who conduct research on the space station often return their experiments to Earth for additional analysis and study. But the conditions that spacecraft experience during atmospheric reentry, including extreme heat, can have unintended effects on their contents. Thermal protection systems used to shield spacecraft and their contents are based on numerical models that often lack validation from actual flight, which can lead to significant overestimates in the size of system needed and take up valuable space and mass. Kentucky Re-entry Probe Experiment-2 (KREPE-2), part of an effort to improve thermal protection system technology, uses three capsules outfitted with different heat shield materials and a variety of sensors to obtain data on actual reentry conditions.
“Building on the success of KREPE-1, we have improved the sensors to gather more measurements and improved the communication system to transmit more data,” said Alexandre Martin, principal investigator at the University of Kentucky. “We have the opportunity to test several heat shields provided by NASA that have never been tested before, and another manufactured entirely at the University of Kentucky, also a first.”
The capsules can be outfitted for other atmospheric re-entry experiments, supporting improvements in heat shielding for applications on Earth, such as protecting people and structures from wildfires.
Remote Robotic Surgery
The surgical robot during testing on the ground before launch.Virtual Incision Corporation Robotic Surgery Tech Demo tests the performance of a small robot that can be remotely controlled from Earth to perform surgical procedures. Researchers plan to compare procedures in microgravity and on Earth to evaluate the effects of microgravity and time delays between space and ground.
The robot uses two “hands” to grasp and cut rubber bands, which simulate surgical tissue and provide tension that is used to determine where and how to cut, according to Shane Farritor, chief technology officer at Virtual Incision Corp., developer of the investigation with the University of Nebraska.
Longer space missions increase the likelihood that crew members may need surgical procedures, whether simple stiches or an emergency appendectomy. Results from this investigation could support development of robotic systems to perform these procedures. In addition, the availability of a surgeon in rural areas of the country declined nearly a third between 2001 and 2019. Miniaturization and the ability to remotely control the robot help make surgery available anywhere and anytime on Earth.
NASA has sponsored research on miniature robots for more than 15 years. In 2006, remotely operated robots performed procedures in the underwater NASA’s Extreme Environment Mission Operations (NEEMO) 9 mission. In 2014, a miniature surgical robot performed simulated surgical tasks on the zero-g parabolic airplane.
Growing Cartilage Tissue in Space
The Janus Base Nano-matrix anchor cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).University of Connecticut Compartment Cartilage Tissue Construct demonstrates two technologies, Janus Base Nano-Matrix and Janus Base Nanopiece. Nano-Matrix is an injectable material that provides a scaffold for formation of cartilage in microgravity, which can serve as a model for studying cartilage diseases. Nanopiece delivers an RNA (ribonucleic acid)-based therapy to combat diseases that cause cartilage degeneration.
Cartilage has a limited ability to self-repair and osteoarthritis is a leading cause of disability in older patients on Earth. Microgravity can trigger cartilage degeneration that mimics the progression of aging-related osteoarthritis but happens more quickly, so research in microgravity could lead to faster development of effective therapies. Results from this investigation could advance cartilage regeneration as a treatment for joint damage and diseases on Earth and contribute to development of ways to maintain cartilage health on future missions to the Moon and Mars.
Cargo Highlights
SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station
NASA’s Northrop Grumman 20th commercial resupply mission will carry 7,805 pounds (3,540 kilograms) of cargo to the International Space Station.NASA Hardware
Hydrogen Dome Assembly includes all hydrogen and oxygen electrolysis replacement components within the International Space Station’s Oxygen Generation Assembly. These items are contained in a sub-ambient dome maintained at near vacuum pressure, designed to contain an explosion or fire in the electrolysis cell stack during operation. The dome provides a second barrier to protect against cabin air internal leakage and external leakage into the rack environment, and is pressurized with nitrogen gas for launch. This will launch as an on-orbit spare. Ion Exchange Bed — The ion exchange bed replacement unit consists of a pair of tubes in series containing ion exchange resins, which remove organic acids from the catalytic reactor effluent, and microbial check valve resin, which injects iodine into the water as a biocide agent. This will launch as an on-orbit spare. Catalytic Reactor — The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This will launch as an on-orbit spare. Biocide Maintenance Canister — The Internal Thermal Control System Coolant Maintenance Assembly is designed to administer o-phthalaldehyde, a biocide used to purify the internal cooling loops in the Destiny laboratory, and the Harmony, Tranquility, Columbus, and Japanese Experiment Modules, to prevent the growth of microorganisms in the thermal control system. This unit will replace the current one installed in the laboratory. Cylinder Flywheel — The ARED (Advanced Resistive Exercise Device) cylinder-flywheel assemblies provide the resistive loads for astronaut anaerobic exercise. The cylinder flywheels impart inertial forces to simulate Earth’s gravity during exercise. International Space Station Roll Out Solar Array Modification Kit 7 – This upgrade kit consists of upper, mid, and lower struts (one each for left and right), a backbone, brackets, and support hardware for the new solar panels. This is the third in series of four modification kits needed to support the installation of the fourth set of upgraded solar arrays. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power. Urine Processor Assembly Pressure Control and Pump Assembly — The assembly evacuates the urine distillation assembly at startup and periodically purges non-condensable gases and water vapor and pumps them to the separator plumbing assembly. The purge pump housing and pressure control and pump assembly manifolds are liquid cooled to promote steam condensation, thereby reducing the volume of the purge gas. All these systems make up the system used to covert urine to drinking water. Collection Packet and Adapter — Required for minimal, nominal water microbial sampling. In-flight water quality assessment is needed to assure that water of acceptable, defined quality will be available aboard the space station. Watch and Engage
Live coverage of the launch from Cape Canaveral Space Force Station in Cape Canaveral, Florida, will air on NASA TV, NASA+ and the agency’s website. Live coverage will begin at 12:15 p.m.
Live coverage of Cygnus’ rendezvous and capture at the space station will begin at 3:35 a.m. Jan. 31. Read more about how to watch and engage.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.