Jump to content

Beyond the Brim, Sombrero Galaxy's Halo Suggests a Turbulent Past


HubbleSite

Recommended Posts

low_STSCI-H-p2008a-k-1340x520.png

Like a desperado in the Wild West, the broad "brim" of the Sombrero galaxy's disk may conceal a turbulent past. The Sombrero (M104) has never been a galaxy to fit the mold. It has an intriguing mix of shapes found in disk-shaped spiral galaxies, as well as football-shaped elliptical galaxies. The story of its structure becomes stranger with new evidence from the Hubble Space Telescope indicating the Sombrero is the result of major galaxy mergers, though its smooth disk shows no signs of recent disruption.

The galaxy's faint halo offers forensic clues. It's littered with innumerable stars that are rich in heavier elements (called metals), because they are later-generation stars. Such stars are usually only found in a galaxy's disk. They must have been tossed into the halo through mergers with mature, metal-rich galaxies in the distant past. The iconic galaxy now looks a bit more settled in its later years. It is now so isolated, there is nothing else around to feed on. This finding offers a new twist on how galaxies assemble themselves in our compulsive universe.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      An aerial image from 1965 shows the dual flame trenches of the Thad Cochran Test Stand (B-1/B-2) under construction at NASA’s Stennis Space Center (then known as Mississippi Test Operations) taking shape.NASA/Stennis Since the United States sent the first humans to the Moon more than 60 years ago, NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has answered the call to help power the nation’s space dreams.  
      “History shows NASA Stennis is the country’s premier rocket engine test site and the go-to place for propulsion testing,” NASA Stennis Director John Bailey said. “It started with Apollo and continued through space shuttle. Now, we are going back to the Moon and beyond with Artemis – and it all comes through NASA Stennis.” 
      As the nation raced to send the first humans to the Moon, NASA selected a remote location in Hancock County, Mississippi, in October 1961 to test the needed rocket stages. Thanks to a massive construction project, the site conducted its first Saturn V rocket stage test in April 1966. In the next four-plus years, NASA Stennis tested 27 Saturn V stages, including those that launched 12 astronauts to walk on the Moon.  
      “Talking to people working here during those years, you hear how much they believed in the mission,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “Their hard work helped America reach the Moon and showed us the possibilities for NASA Stennis.”   
      Construction workers bring down a tree during the early days of construction for NASA’s Stennis Space Center. Tree-cutting to start what was the largest construction project in Mississippi – and one of the largest in the United States – at the time began May 17, 1963.NASA/Stennis NASA Stennis (then known as the Mississippi Test Facility) conducts its first-ever test firing – a 15-second hot fire of the Saturn V S-II-C second stage prototype – on the A-2 Test Stand on April 23, 1966.NASA/Stennis An aerial image from early 1967 shows the completed A-2 Test Stand in the foreground and the Thad Cochran Test Stand (B-1/B-2) in the background at NASA’s Stennis Space Center, then known as the Mississippi Test Facility.NASA/Stennis NASA officials view the first space shuttle main engine test on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center (then known as National Space Technology Laboratories) on May 19, 1975.NASA/Stennis A 1979 image offers a close-up view of a space shuttle main propulsion test article hot fire on the B-2 side of the Thad Cochran Test Stand at NASA’s Stennis Space Center (then known as National Space Technology Laboratories). Main propulsion test article testing involved installing a shuttle fuel tank, a mockup of the shuttle orbiter and the vehicle’s three-engine configuration on the stand, then firing all three engines simultaneously, as would be done during an actual launch.NASA/Stennis As Apollo missions neared an end, plans were underway to drastically reduce the NASA Stennis footprint. Enter the space shuttle. NASA considered three locations to test engines for its new reusable vehicle before selecting NASA Stennis on March 1, 1970, ensuring the center’s future for the next several decades.  
      Space shuttle main engine testing proved challenging as the site transitioned from handling full rocket stages to firing single engines. “A big part of the challenge was the fact that teams were testing an entire engine from the very start,” NASA Test Operations Chief Maury Vander said. “Typically, you begin testing components, then progress to a full engine. Teams had a lot to learn in real time.” 
      NASA Stennis teams also tested the shuttle Main Propulsion Test Article with three engines firing simultaneously. The testing was particularly critical given the first shuttle mission would carry astronauts. 
      NASA Stennis teams worked diligently to demonstrate the shuttle system would operate safely, an effort characterized as one of the site’s finest hours. Following the first shuttle mission in 1981, astronauts Robert Crippen and John Young visited the south Mississippi site. “The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees. 
      From 1975 to 2009, NASA Stennis tested every main engine to help power 135 shuttle missions that enabled historic missions, such as those that deployed and repaired the Hubble Space Telescope and assembled the International Space Station, enabling its many scientific experiments and spinoff technologies. The site also tested every engine and component upgrade and helped troubleshoot performance issues. It led test campaigns following shuttle accidents to help ensure safe returns to flight. In total, the site conducted 2,307 tests for 820,475.68 seconds of accumulated hot fire. 
      NASA conducts the final test of a space shuttle main engine on the A-2 Test Stand at NASA’s Stennis Space Center on July 29, 2009. The Space Shuttle Program concluded two years later with the STS-135 shuttle mission.  NASA / Stennis An on-stand camera offers a closeup view of the first test of an RS-25 engine on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Jan. 9, 2015. RS-25 engines power the core stage of NASA’s powerful SLS (Space Launch System) rocket.NASA/Stennis Crews at NASA’s Stennis Space Center install the first core stage of NASA’s powerful SLS (Space Launch System) on the B-2 side of the Thad Cochran Test Stand on Jan. 21-22, 2020. Following testing, the stage would help launch the Artemis I mission in November 2022.NASA/Stennis NASA conducts a full-duration RS-25 hot fire April 3, 2024, on the Fred Haise Test Stand at NASA’s Stennis Space Center, achieving a major milestone for future Artemis flights of NASA’s SLS (Space Launch System) rocket. It marked the final hot fire of a 12-test series to certify production of new RS-25 engines by lead contractor L3Harris (formerly known as Aerojet Rocketdyne) to help power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V.NASA/Stennis Even as NASA Stennis tested main engines to power shuttle missions, the site led in testing next-generation engines, including the Fastrac, XRS-2200 linear aerospike, and J-2X. It also developed its E Test Complex, with multiple test stands and cells, to support a range of component and engine test projects, including those of commercial aerospace companies.
      A landmark agreement between NASA Stennis and Aerojet Rocketdyne (now known as L3Harris) in 1998 marked the site’s first test partnership with such a company. “That was the starting point,” said Vander. “Today, we are a preferred partner for multiple companies and test projects, large and small.” 
      NASA Stennis also is testing RS-25 engines and related systems to help power NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon. When the agency travels to Mars, it is expected the missions will launch with engines tested at the Mississippi site as well. 
      “The Gulf Coast of Mississippi helped achieve our space dreams of the past, and NASA Stennis continues supporting today’s dreams,” Bailey said. “It is a true testament to the expertise and dedication of our entire team and the incredible support of surrounding communities and the whole state.” 
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      From the Mission Control Center to community celebrations, Kenneth Attocknie blends safety expertise with a commitment to cultural connection. 

      For the past 25 years at NASA, Attocknie has dedicated his career to safeguarding the International Space Station and supporting real-time mission operations at Johnson Space Center in Houston.  

      As a principal safety engineer in the Safety and Mission Assurance Directorate, Attocknie ensures the safe operation of the space station’s environmental control and life support system. This system is vital for maintaining the life-sustaining environment aboard the orbiting laboratory— a critical foundation for similar systems planned for future Artemis missions. 
      Official portrait of Kenneth Attocknie.NASA/Bill Stafford As a contractor with SAIC, Attocknie has served as a flight controller, astronaut crew office engineer, and astronaut crew instructor. He joined NASA just as the first two modules of the space station, Zarya and Unity, connected in space on Dec. 6, 1998.  

      “I’ve supported the space station ever since and have been blessed to witness the remarkable progression of this amazing orbiting experiment,” he said. “I feel I have found a way to contribute positively to NASA’s mission: to improve life for all people on our planet.” 

      He also contributed to closing out the Space Shuttle Program and worked in system safety for the Constellation program. 

      As part of SAIC’s Employee Resource Group, Attocknie supports the Mathematics, Engineering, Science Achievement project, which uses project-based learning to inspire high school students from underrepresented communities to pursue careers in science, technology, engineering, and mathematics. He continues to advocate for Native Americans as a member of the American Indian Science and Engineering Society, helping NASA engage with college students across Indian Country. 
      Flight controller Kenneth Attocknie on console in the Blue Flight Control Room during Expedition 11. NASA/Mark Sowa Attocknie strives to contribute to a space exploration legacy that uplifts and unites cultures, paving the way for a future in human spaceflight that honors and empowers all. 

      A member of the Comanche and Caddo tribes of Oklahoma, he has made it his mission to create a cross-cultural exchange between NASA and Native communities to provide opportunities for Natives to visit Johnson.  

      One of his proudest moments was organizing a Native American Heritage Month event with NASA’s Equal Opportunity and Diversity Office. The celebration brought together Native dancers and singers from Oklahoma and Texas to honor their heritage at Johnson.  

      “Seeing the Johnson community rally around this event was amazing,” said Attocknie. “It was a profound experience to share and celebrate my culture here.” 
      A traditional dance exhibition during a Native American cultural celebration at NASA’s Johnson Space Center in Houston. NASA/Allison Bills Overcoming challenges and setbacks has been part of his NASA experience as well. “Finding and achieving my purpose is always an ongoing journey,” he said. “Accepting what might seem like a regression is the first step of growth. There’s always a lesson to be found, and every disappointment can fuel a new ambition and direction. Ride the waves, be humble, learn lessons, and above all, always keep going.” 

      He believes that NASA’s mission is deeply connected to diversity and inclusion. “You can’t truly benefit humankind if you don’t represent humankind,” said Attocknie. “The status quo may feel comfortable, but it leads to stagnation and is the antithesis of innovation.” 
      Kenneth Attocknie (middle) celebrates his Native American culture with the Caddo tribe of Oklahoma.NASA/Allison Bills Attocknie’s hope for the Artemis Generation? “A healthier planet, society, and the desire to pass on lessons of stewardship for our environment. All life is precious.” 

      He sees NASA as a gateway to a brighter future: “NASA can truly harness its influence to be an example for our planet, not only in the new heavenly bodies we journey to but also in the new human spirits we touch.” 
      View the full article
    • By NASA
      Learn Home Watch How Students Help NASA… Citizen Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth
      Since 2015, students from across the USA have been partnering with scientists at NASA to advance research on growing plants in space, ultimately to feed astronauts on long-distance space missions, as part of Fairchild Tropical Botanic Garden’s Growing Beyond Earth project, which is now in its 9th year. This classroom-based citizen science project for 6th-12th grade students includes a series of plant experiments conducted by students in a Fairchild-designed plant habitat similar to the Vegetable Production System (VEGGIE) on the International Space Station.
      This year, 8000+ students from 400+ schools are testing new edible plant varieties, studying radiation effects on growth, exploring the perfect light spectrum for super-sized space radishes, and experimenting with cosmic soil alternatives.
      Watch these South Florida students show us how it’s done.
      NASA citizen science projects are open to everyone around the world, not limited to U.S. citizens or residents. They are collaborations between scientists and interested members of the public. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. More than 450 NASA citizen scientists have been named as co-authors on refereed scientific publications. Explore opportunities for you to get involved and do NASA science: https://science.nasa.gov/citizen-science/
      The Growing Beyond Earth project is supported by NASA under cooperative agreement award number 80NSSC22MO125 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Niki Jose Share








      Details
      Last Updated Oct 28, 2024 Editor NASA Science Editorial Team Related Terms
      Citizen Science Opportunities For Students to Get Involved Plant Biology Science Activation Vegetable Production System (VEGGIE) Explore More
      3 min read Kites in the Classroom: Training Teachers to Conduct Remote Sensing Missions


      Article


      3 days ago
      2 min read Educator Night at the Museum of the North: Activating Science in Fairbanks Classrooms


      Article


      4 days ago
      3 min read Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Sonifications of three images have been released to mark the 25th anniversary of Chandra’s “First Light” image. For Cassiopeia A, which was one of the first objects observed by Chandra, X-ray data from Chandra and infrared data from Webb have been translated into sounds, along with some Hubble data. The second image in the sonification trio, 30 Doradus, also contains Chandra and Webb data. NGC 6872 contains data from Chandra as well as an optical image from Hubble. Each of these datasets have been mapped to notes and sounds based on properties observed by these telescopes.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) A quarter of a century ago, NASA released the “first light” images from the agency’s Chandra X-ray Observatory. This introduction to the world of Chandra’s high-resolution X-ray imaging capabilities included an unprecedented view of Cassiopeia A, the remains of an exploded star located about 11,000 light-years from Earth. Over the years, Chandra’s views of Cassiopeia A have become some of the telescope’s best-known images.
      To mark the anniversary of this milestone, new sonifications of three images – including Cassiopeia A (Cas A) – are being released. Sonification is a process that translates astronomical data into sound, similar to how digital data are more routinely turned into images. This translation process preserves the science of the data from its original digital state but provides an alternative pathway to experiencing the data.
      This sonification of Cas A features data from Chandra as well as NASA’s James Webb, Hubble, and retired Spitzer space telescopes. The scan starts at the neutron star at the center of the remnant, marked by a triangle sound, and moves outward. Astronomers first saw this neutron star when Chandra’s inaugural observations were released 25 years ago this week. Chandra’s X-rays also reveal debris from the exploded star that is expanding outward into space. The brighter parts of the image are conveyed through louder volume and higher pitched sounds. X-ray data from Chandra are mapped to modified piano sounds, while infrared data from Webb and Spitzer, which detect warmed dust embedded in the hot gas, have been assigned to various string and brass instruments. Stars that Hubble detects are played with crotales, or small cymbals.
      Another new sonification features the spectacular cosmic vista of 30 Doradus, one of the largest and brightest regions of star formation close to the Milky Way. This sonification again combines X-rays from Chandra with infrared data from Webb. As the scan moves from left to right across the image, the volume heard again corresponds to the brightness seen. Light toward the top of the image is mapped to higher pitched notes. X-rays from Chandra, which reveal gas that has been superheated by shock waves generated by the winds from massive stars, are heard as airy synthesizer sounds. Meanwhile, Webb’s infrared data show cooler gas that provides the raw ingredients for future stars. These data are mapped to a range of sounds including soft, low musical pitches (red regions), a wind-like sound (white regions), piano-like synthesizer notes indicating very bright stars, and a rain-stick sound for stars in a central cluster.
      The final member of this new sonification triumvirate is NGC 6872, a large spiral galaxy that has two elongated arms stretching to the upper right and lower left, which is seen in an optical light view from Hubble. Just to the upper left of NGC 6872 appears another smaller spiral galaxy. These two galaxies, each of which likely has a supermassive black hole at the center, are being drawn toward one another. As the scan sweeps clockwise from 12 o’clock, the brightness controls the volume and light farther from the center of the image is mapped to higher-pitched notes. Chandra’s X-rays, represented in sound by a wind-like sound, show multimillion-degree gas that permeates the galaxies. Compact X-ray sources from background galaxies create bird-like chirps. In the Hubble data, the core of NGC 6872 is heard as a dark low drone, and the blue spiral arms (indicating active star formation) are audible as brighter, more highly pitched tones. The background galaxies are played as a soft pluck sound while the bright foreground star is accompanied by a crash cymbal.
      More information about the NASA sonification project through Chandra, which is made in partnership with NASA’s Universe of Learning, can be found at https://chandra.si.edu/sound/.  The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida, (both of the SYSTEM Sounds project), along with consultant Christine Malec.
      NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.
      More about Chandra
      Chandra, managed for NASA by Marshall in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      https://cxc.harvard.edu
      News Media Contact
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Sep 03, 2024 LocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Marshall Space Flight Center Explore More
      5 min read Cassiopeia A, Then the Cosmos: 25 Years of Chandra X-ray Science
      Article 1 week ago 9 min read 25 Years Ago: STS-93, Launch of the Chandra X-Ray Observatory
      Article 1 month ago 5 min read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Idaho State University class of 2025 poses with their new hands-on learning tool, the DC-8 aircraft, after it was retired from NASA in May 2024 and arrived in Pocatello, Idaho. The university will use the aircraft to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program.Idaho State University In May 2024, Idaho State University’s class of 2025 received a new learning tool from NASA. The DC-8 aircraft served the world’s scientific community for decades as a platform under NASA’s Airborne Science Program before retiring to Idaho State University (ISU) to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program. 
      “The DC-8 has quickly become a cornerstone of our Aircraft Maintenance Technology program at ISU,” said Jake Dixon, Director of Marketing and Recruitment at the ISU College of Technology. “It has already enhanced our summer classes ahead of its full integration with the start of the new school year this fall.” 
      The DC-8 flew its final flight from NASA’s Armstrong Flight Research Center in Edwards, California to Idaho State University in Pocatello, Idaho in May 2024. That flight represented the retirement of the aircraft after 37 years of supporting airborne science missions as a NASA aircraft. 
      “The opportunity for students to interact firsthand with the aircraft’s systems and features significantly extends their learning beyond what theory or textbooks can provide,” Dixon said.
      The DC-8 flies low for the last time over NASA’s Armstrong Flight Research Center in Edwards, California, before it retires to Idaho State University in Pocatello, Idaho. The DC-8 is providing real-world experience to train future aircraft technicians at the college’s Aircraft Maintenance Technology Program.NASA/Genaro Vavuris The DC-8 served as an educational platform for years. Beginning in 2009, the DC-8 functioned as an airborne science laboratory for NASA’s Student Airborne Research Program (SARP), where rising-senior undergraduates were selected to participate in a real science campaign and acquire hands-on research experience. The educational impact of the DC-8 is evident in the professional growth of scientists who have experienced it. 
      “Almost everything I’ve learned about using an airplane to collect scientific data can be linked back to my time flying projects on the DC-8.” says Jonathan Zawislak, Flight Director with the Aircraft Operations Center at the National Oceanic and Atmospheric Administration (NOAA). “It has left an indelible mark on the Earth science community and no doubt paved the way for a new generation of scientists, as it did for me and my career as a science aviator.”
      NASA Armstrong’s Student Airborne Research Program celebrated 15 years of success in 2023. An eight-week summer internship program, SARP offered upper-level undergraduate students the opportunity to acquire hands-on research experience as part of a scientific campaign using NASA Airborne Science Program flying science laboratories – aircraft outfitted specifically for research projects. NASA/Carla Thomas Real-life platforms like the DC-8 are an exciting and meaningful learning tool that enable college students to go beyond the textbook, and they make a lasting impact on communities adjacent to its activities. 
      “We have seen so much enthusiasm surrounding the DC-8’s arrival that we are organizing an open house in the future to allow the community and aviation enthusiasts alike to explore this historic aircraft,” said Dixon. “Doing so will help preserve the remarkable legacy of the DC-8, ensuring it continues to inspire and educate for years to come.” 
      Whether as a science platform or as a unique aircraft, the DC-8 has a legacy that continues to inspire and educate generations of scientists, engineers, and aviators. 
      Learn more about NASA’s SARP program 
      Learn more about the retired DC-8 aircraft Learn more about NASA’s Armstrong Flight Research Center
      Share
      Details
      Last Updated Aug 22, 2024 Related Terms
      Armstrong Flight Research Center Science in the Air Science Mission Directorate Explore More
      4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes
      To better understand Mars, NASA’s Goddard Instrument Field Team headed deep into the backcountry of…
      Article 2 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
      NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking…
      Article 1 day ago 2 min read Hubble Spots Billowing Bubbles of Stellar Floss
      A bubbling region of stars both old and new lies some 160,000 light-years away in…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Flight Research Center History
      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...