Jump to content

World’s First Reflight of an Orbital Class Rocket | SES-10 Technical Webcast


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Internal view of LignoSat’s structure shows the relationship among wooden panels, aluminum frames, and stainless-steel shafts.Credit: Kyoto University In December 2024, five CubeSats deployed into Earth’s orbit from the International Space Station. Among them was LignoSat, a wooden satellite from JAXA (Japanese Aerospace Exploration Agency) that investigates the use of wood in space. Findings could offer a more sustainable alternative to conventional satellites.
      A previous experiment aboard station exposed three species of wood to the space environment to help researchers determine the best option for LignoSat. The final design used 10 cm long honoki magnolia wood panels assembled with a Japanese wood-joinery method.
      Researchers will use sensors to evaluate strain on the wood and measure its responses to temperature and radiation in space. Geomagnetic levels will also be monitored to determine whether the geomagnetic field can penetrate the body of the wooden satellite and interfere with its technological capabilities. Investigating uses for wood in space could lead to innovative solutions in the future.

      A traditional Japanese wooden joining method, the Blind Miter Dovetail Joint, is used for LignoSat to connect two wooden panels without using glue or nails.Credit: Kyoto University Three CubeSats are deployed from space station, including LignoSat. Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Technology Demonstration
      Space Station Research Results
      Space Station Research and Technology Resources
      View the full article
    • By Space Force
      The activation of S4S was part of U.S. Space Force’s plan to normalize the presentation of space forces across combatant commands and most efficiently meet the challenges presented by the dynamic national security environment and the return to Great Power Competition.

      View the full article
    • By European Space Agency
      In a world first, ESA and Telesat have successfully connected a Low Earth Orbit (LEO) satellite to the ground using 5G Non-Terrestrial Network (NTN) technology in the Ka-band frequency range, marking a crucial step towards making space-based connections as simple as using a mobile phone.
      View the full article
    • By Space Force
      The new squadron, which falls under Space Delta 11, marks a critical milestone in advancing the Space Force’s ability to test, train, and prepare for cyber threats in the contested space domain.

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft completed its first maximum afterburner test at Lockheed Martin’s Skunk Works facility in Palmdale, California. This full-power test, during which the engine generates additional thrust, validates the additional power needed for meeting the testing conditions of the aircraft. The X-59 is the centerpiece of NASA’s Quesst mission, which aims to overcome a major barrier to supersonic flight over land by reducing the noise of sonic booms.Lockheed Martin Corporation/Garry Tice NASA completed the first maximum afterburner engine run test on its X-59 quiet supersonic research aircraft on Dec. 12. The ground test, conducted at Lockheed Martin’s Skunk Works facility in Palmdale, California, marks a significant milestone as the X-59 team progresses toward flight.
      An afterburner is a component of some jet engines that generates additional thrust. Running the engine, an F414-GE-100, with afterburner will allow the X-59 to meet its supersonic speed requirements. The test demonstrated the engine’s ability to operate within temperature limits and with adequate airflow for flight. It also showed the engine’s ability to operate in sync with the aircraft’s other subsystems.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to supersonic flight over land by making sonic booms quieter. The X-59’s first flight is expected to occur in 2025.
      Share
      Details
      Last Updated Dec 20, 2024 EditorDede DiniusContactMatt Kamletmatthew.r.kamlet@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Integrated Aviation Systems Program Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 4 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 4 hours ago 3 min read Atmospheric Probe Shows Promise in Test Flight
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Supersonic Flight
      Quesst: The Vehicle
      View the full article
  • Check out these Videos

×
×
  • Create New...