Members Can Post Anonymously On This Site
SpaceX Testing - Falcon 9 Static Fire
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
From left to right: Astrolab’s FLEX, Intuitive Machines’ Moon RACER, and Lunar Outpost’s Eagle lunar terrain vehicle at NASA’s Johnson Space Center. NASA/Bill Stafford Through NASA’s Artemis campaign, astronauts will land on the lunar surface and use a new generation of spacesuits and rovers as they live, work, and conduct science in the Moon’s South Pole region, exploring more of the lunar surface than ever before. Recently, the agency completed the first round of testing on three commercially owned and developed LTVs (Lunar Terrain Vehicle) from Intuitive Machines, Lunar Outpost, and Venturi Astrolab at NASA’s Johnson Space Center in Houston.
As part of an ongoing year-long feasibility study, each company delivered a static mockup of their vehicle to Johnson at the end of September, initiated rover testing in October and completed the first round of testing in December inside the Active Response Gravity Offload System (ARGOS) test facility. Lunar surface gravity is one-sixth of what we experience here on Earth, so to mimic this, ARGOS offers an analog environment that can offload pressurized suited subjects for various reduced gravity simulations.
NASA astronauts Raja Chari (left) and Randy Bresnik (right) sit inside Lunar Outpost’s Eagle lunar terrain vehicle evaluating the seat configuration during testing at NASA’s Johnson Space Center. NASA/David DeHoyos NASA astronaut Jessica Meir grabs a lunar geology tool from a tool rack on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Joe Acaba prepares to climb on top of Intuitive Machines’ Moon RACER lunar terrain vehicle to get to a science payload during testing at NASA’s Johnson Space Center.NASA/Josh Valcarcel NASA astronaut Jessica Meir puts a science sample inside of a storage box on Intuitive Machines’ Moon RACER lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Frank Rubio (left) and NASA spacesuit engineer Zach Tejral (right) sit inside Astrolab’s FLEX lunar terrain vehicle evaluating the display interfaces during testing at NASA’s Johnson Space Center.NASA/James Blair NASA astronaut Jessica Watkins stores science payloads on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.
steve munday
NASA's Lunar Terrain Vehicle Project Manager
NASA’s engineering teams conducted tests where suited NASA astronauts and engineers performed tasks, maneuvers, and emergency drills on each rover. With astronauts acting as the test subjects, these human-in-the-loop tests are invaluable as crewmembers provide critical feedback on each rover’s design functionality, evaluate display interfaces and controls, and help identify potential safety concerns or design issues. This feedback is shared directly with each commercial provider, to incorporate changes based on lessons learned as they evolve their rover design.
“We are excited to have mockups from all three LTV commercial providers here at Johnson Space Center,” said Steve Munday, LTV project manager. “This is the first major test milestone within the Lunar Terrain Vehicle Services contract and to have actual rovers delivered only four months after these companies were awarded is remarkable.”
NASA engineer Dave Coan (left) and NASA astronaut Jessica Watkins (right) sit inside from Intuitive Machines’ Moon RACER lunar terrain vehicle evaluating the crew compartment during testing at NASA’s Johnson Space Center.NASA/James Blair Testing consisted of NASA astronauts and engineers taking turns wearing both NASA’s Exploration Extravehicular Mobility Unit planetary prototype spacesuit as well as Axiom Space’s Axiom Extravehicular Mobility Unit lunar spacesuit. The test teams performed evaluations to understand the interactions between the crew, the spacesuits, and the LTV mockups.
While wearing NASA’s prototype spacesuit, crew members were suspended from ARGOS allowing teams to mimic theone-sixth gravitational field of the lunar surface. This allowed the crew members to conduct tasks on the outside of each rover, such as gathering or storing lunar geology tools, deploying science payloads, and handling cargo equipment, as if they are walking on the Moon.
NASA astronaut Joe Acaba raises the solar array panel on Lunar Outpost’s Eagle lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz While wearing Axiom Space’s pressurized spacesuit, teams evaluated the level of ease or difficulty in mobility crewmembers experienced when entering and exiting the rovers, the crew compartment and design, and the functionality of interacting with display interfaces and hand controls while wearing thick spacesuit gloves.
As part of testing, teams also conducted emergency drills, where engineers simulated rescuing an incapacitated crew member. As part of NASA’s requirements, each rover must have a design in place that enables an astronaut to single-handedly rescue their crewmates in the event of an emergency.
NASA astronaut Jessica Watkins picks up a lunar geology tool from a stowage drawer on Astrolab’s FLEX lunar terrain vehicle during testing at NASA’s Johnson Space Center.NASA/Robert Markowitz Since NASA selected the companies, Intuitive Machines, Lunar Outpost, and Venturi Astrolab have been working to meet NASA’s requirements through the preliminary design review. In 2025, the agency plans to issue a request for task order proposals to any eligible providers for a demonstration mission to continue developing the LTV, deliver it to the surface of the Moon, and validate its performance and safety ahead of Artemis V, when NASA intends to begin using the LTV for crewed operations.
Through Artemis, NASA will send astronauts – including the next Americans, and the first international partner astronaut – to explore the Moon for scientific discovery, technology evolution, economic benefits, and to build the foundation for future crewed missions to Mars.
Learn about the rovers, suits, and tools that will help Artemis astronauts to explore more of the Moon:
https://go.nasa.gov/3MnEfrB
Share
Details
Last Updated Dec 17, 2024 Related Terms
Humans in Space Artemis Artemis 5 Exploration Systems Development Mission Directorate Johnson Space Center xEVA & Human Surface Mobility Explore More
3 min read NASA Participates in Microgravity Science Summit
Article 18 hours ago 5 min read Orion Spacecraft Tested in Ohio After Artemis I Mission
Article 1 day ago 2 min read Station Science Top News: Dec. 13, 2024
Article 2 days ago Keep Exploring Discover More Topics From NASA
Humans In Space
Human Landing System
Commercial Space
Orion Spacecraft
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Stennis Space Center enjoyed an active 2024, marking several milestones and engaging in frontline activities in several key areas. A compilation video offers a look at 2024 highlights in such areas of work as propulsion testing, autonomous systems, range operations, community outreach, and STEM engagement. NASA’s Stennis Space Center near Bay St. Louis, Mississippi, celebrated propulsion testing and site operations milestones in 2024, all while inspiring the Artemis Generation and welcoming new leadership that will help NASA Stennis innovate and grow into the future.
Featured highlights show a year of progress and vision, as NASA Stennis accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to grow as an impactful aerospace and technology hub.
“These highlights are just a small snapshot of 2024 at NASA Stennis that show the future is bright,” Bailey said. “We have an incredibly talented and committed team of employees – and all of Mississippi can be proud of the work they do here at NASA Stennis. Together, with the Artemis Generation leading the way, we are returning to the Moon. Together, we are a part of something great.”
New Center Leadership
NASA Stennis Director John Bailey, right, and NASA Stennis Deputy Director Christine Powell stand near the United States Capitol during a visit to Washington, D.C. on Sept. 18. It marked the first visit to Capitol Hill for the center leaders since being named to their current roles. NASA/Stennis NASA Administrator Bill Nelson named John Bailey as director of NASA Stennis in April. Bailey had been serving as acting director since January 2024. “So much of NASA runs through Stennis,” said Nelson. “It is where we hone new and exciting capabilities in aerospace, technology, and deep space exploration. I am confident that John will lead the nation’s largest and premier propulsion test site to even greater success.”
Four months later in August, Bailey announced that longtime propulsion engineer/manager Christine Powell had been selected as deputy director of NASA Stennis.
Powell, the first woman selected as NASA Stennis deputy director, began her 33-year agency career as an intern at the center in 1991. She previously worked in multiple Engineering and Test Directorate roles, and most recently served as manager of the NASA Rocket Propulsion Test Program Office.
Propulsion Activity
NASA achieves a major milestone for future Artemis missions with successful completion of the second – and final – RS-25 engine certification test series April 3 on the Fred Haise Test Stand at NASA’s Stennis Space Center. NASA/Danny Nowlin NASA achieved major milestones for future Artemis missions at NASA Stennis in 2024. The NASA Stennis test team successfully completed a second – and final – RS-25 engine certification test series in April. The mission-critical series verified engine upgrades designed to enhance efficiency and reliability for future SLS (Space Launch System) missions.
NASA Stennis crews also completed a safe lift and installation of the interstage simulator component in October needed for future testing of NASA’s exploration upper stage in the B-2 position of the Thad Cochran Test Stand. The component will function during Green Run testing like the SLS interstage section that helps protect the upper stage during Artemis launches.
The test complex milestones support NASA’s goal of returning humans to the Moon and paving the way for future Mars exploration through Artemis missions.
Commercial Testing
NASA Stennis commercial tenant Rocket Lab completes a successful hot fire test of its Archimedes engine in its onsite test complex in the second half of 2024. Rocket Lab is one of numerous customers conducting test campaigns at NASA Stennis during the most recent year. Rocket Lab Already the nation’s largest multiuser propulsion test site, NASA Stennis aims to continue fueling growth of the commercial space market even further by working with aerospace companies to support a range of testing needs. In 2024, NASA Stennis supported work conducted by commercial companies such as Boeing, Blue Origin, Evolution Space, Launcher (a Vast company), Relativity Space, Rocket Lab, and Rolls-Royce.
Officials from NASA Stennis and Roll-Royce also broke ground in June for a test pad located in the NASA Stennis E Test Complex. Rolls-Royce will conduct hydrogen testing for the Pearl 15 engine, which helps power the Bombardier Global 5500 & 6500 aircraft.
ASTRA Mission Success
Members of the NASA Stennis Autonomous Systems Laboratory team monitor the center’s in-space satellite payload from the onsite ASTRA (Autonomous Satellite Technology for Resilient Applications) Payload Operation Command Center. The ASTRA payload launched aboard the Sidus Space LizzieSat-1 small satellite in March 2024, with the NASA Stennis team announcing in July that it had achieved primary mission objectives. In September, the team announced the ASTRA mission would continue during the satellite’s planned four-year mission.NASA/Danny Nowlin In July, NASA Stennis and commercial partner Sidus Space Inc. announced primary mission success for the center’s historic in-space mission – an autonomous systems payload aboard an orbiting satellite.
ASTRA (Autonomous Satellite Technology for Resilient Applications) is the on-orbit payload mission developed by NASA Stennis. The NASA Stennis ASTRA technology demonstrator is a payload rider aboard the Sidus Space premier satellite, LizzieSat-1 (LS-1) small satellite. Partner Sidus Space is responsible for all LS-1 mission operations, including launch and satellite activation, which allowed the NASA Stennis ASTRA team to complete its primary mission objectives.
NASA Stennis announced in September it will continue the center’s in-space autonomous systems payload mission through a follow-on agreement with Sidus Space Inc.
Range Operations
The Skydweller Aero solar-powered, autonomous aircraft flies above the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center during a September 2024 test operation. Skydweller Aero has an ongoing airspace agreement with NASA Stennis to conduct test flights of its aircraft in the area. Skydweller Aero During 2024, NASA Stennis entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a step towards achieving a strategic center goal.
The agreement marked the first Reimbursable Space Act agreement between NASA Stennis and a commercial company to utilize the south Mississippi center’s unique capabilities to support testing and operation of uncrewed systems.
The company announced in October it had completed an initial test flight campaign of the aircraft, including two test excursions totaling 16 and 22.5 hours.
NASA Engagement
NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show on Nov. 1-2. NASA’s exhibits at the air show honored 55th anniversary of the Apollo 11 lunar landing and showcased the agency’s mission to inspire the world through discovery. NASA/Stennis NASA representatives participated in a variety of outreach activities during the past year to create meaningful connections with the Artemis Generation.
The NASA ASTRO CAMP® Community Partners program, which originated at the south Mississippi NASA center, surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators.
NASA Stennis also supported STEM (science, technology, engineering, and mathematics) engagement during the year. It once again joined with NASA’s Robotics Alliance Project and co-sponsor Mississippi Power to support the second annual For the Inspiration and Recognition of Science and Technology (FIRST) Robotics Magnolia Regional Competition in Laurel, Mississippi. The event attracted 37 high school teams from eight states and one from Mexico.
The center also supported NASA activities during the 2024 total solar eclipse. In addition, it hosted informational efforts and exhibits at high-visibility events such as the 51st Annual Bayou Classic, and Essence Fest in New Orleans.
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Dec 16, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
On Thursday, Dec. 5, 2024, a team returns the Artemis II Orion spacecraft to the Final Assembly and Test cell from a vacuum chamber inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida where it underwent vacuum testing. NASA/Eric Hernandez NASA’s Orion spacecraft for the Artemis II test flight returned to the Final Assembly and System Testing (FAST) cell following completion of the second round of vacuum chamber testing on Dec. 5 inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
After returning to the FAST cell, the four main batteries – which supply power to many Orion systems – were installed in the crew module. The batteries returned to NASA Kennedy from their supplier, EaglePicher Technologies, earlier this month. Solar array wings will also be installed onto the spacecraft by international partner ESA (European Space Agency) and its contractor Airbus in early 2025.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
Image credit: NASA/Eric Hernandez
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Quincy Eggert Upside down can be right side up. That’s what NASA researchers determined for tests of an efficient wing concept that could be part of the agency’s answer to making future aircraft sustainable.
Research from NASA’s Advanced Air Transport Technology project involving a 10-foot model could help NASA engineers validate the concept of the Transonic Truss-Braced Wing (TTBW), an aircraft using long, thin wings stabilized by diagonal struts. The TTBW concept’s efficient wings add lift and could result in reduced fuel use and emissions for future commercial single-aisle aircraft. A team at the Flight Loads Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, are using the model, called the Mock Truss-Braced Wing, to verify the concept and their testing methods.
The model wing and the strut have instruments installed to measure strain, then attached to a rigid vertical test frame. Wire hanging from an overhead portion of the frame stabilizes the model wing for tests. For these tests, researchers chose to mount the 10-foot-long aluminum wing upside down, adding weights to apply stress. The upside-down orientation allows gravity to simulate the lift a wing would experience in flight.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. A view from above shows the test structure, the wing, and the strut. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman “A strut reduces the structure needed on the main wing, and the result is less structural weight, and a thinner wing,” said Frank Pena, NASA mock wing test director. “In this case, the test measured the reaction forces at the base of the main wing and at the base of the strut. There is a certain amount of load sharing between the wing and the strut, and we are trying to measure how much of the load stays in the main wing and how much is transferred to the strut.”
To collect those measurements, the team added weights one at a time to the wing and the truss. In another series of tests, engineers tapped the wing structure with an instrumented hammer in key locations, monitoring the results with sensors.
“The structure has natural frequencies it wants to vibrate at depending on its stiffness and mass,” said Ben Park, NASA mock wing ground vibration test director. “Understanding the wing’s frequencies, where they are and how they respond, are key to being able to predict how the wing will respond in flight.”
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Charlie Eloff, left, and Lucas Oramas add weight to the test wing to apply stress used to determine its limits. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Adding weights to the wingtip, tapping the structure with a hammer, and collecting the vibration response is an unusual testing method because it adds complexity, Park said. The process is worth it, he said, if it provides the data engineers are seeking. The tests are also unique because NASA Armstrong designed, built, and assembled the wing, strut, and test fixture, and conducted the tests.
With the successful loads calibration and vibration tests nearly complete on the 10-foot wing, the NASA Armstrong Flight Loads Laboratory team is working on designing a system and hardware for testing a 15-foot model made from graphite-epoxy composite. The Advanced Air Transport Technology TTBW team at NASA’s Langley Research Center in Hampton, Virginia, is designing and constructing the model, which is called the Structural Wing Experiment Evaluating Truss-bracing.
The larger wing model will be built with a structural design that will more closely resembles what could potentially fly on a future commercial aircraft. The goals of these tests are to calibrate predictions with measured strain data and learn how to test novel aircraft structures such as the TTBW concept.
NASA’s Advanced Air Transport Technology project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Frank Pena, test director, checks the mock wing. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Samson Truong, from left, and Ben Park, NASA mock wing ground vibration test director, prepare for a vibration test. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Ben Park, NASA mock wing ground vibration test director, taps the wing structure with an instrumented hammer in key locations and sensors monitor the results. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Share
Details
Last Updated Dec 04, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Transport Technology Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Flight Innovation Green Aviation Tech Sustainable Aviation Explore More
4 min read NASA’s C-20A Studies Extreme Weather Events
Article 6 hours ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
Article 2 days ago 3 min read An Electronic Traffic Monitor for Airports
Ground traffic management program saves passengers and airlines time while cutting fuel costs
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Programs & Projects
Armstrong Aeronautics Projects
Armstrong Capabilities & Facilities
View the full article
-
By NASA
The SpaceX Dragon spacecraft departs the International Space Station as it orbits 264 miles above the south Pacific Ocean northeast of New Zealand.Credit: NASA NASA and its international partners are set to receive scientific research samples and hardware as a SpaceX Dragon spacecraft departs the International Space Station on Thursday, Dec. 5, for its return to Earth.
NASA’s live coverage of undocking and departure begins at 10:50 a.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
The Dragon spacecraft will undock from the forward port of the space station’s Harmony module at 11:05 a.m., and fire its thrusters to move a safe distance away from the station after receiving a command from ground controllers at SpaceX.
After re-entering Earth’s atmosphere, the spacecraft will splash down off the coast of Florida. NASA will not stream the splashdown and will post updates on the agency’s space station blog.
Filled with nearly 6,000 pounds of crew supplies, science investigations, and equipment, the spacecraft arrived to the orbiting laboratory Nov. 5 after it launched Nov. 4 on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 31st commercial resupply services mission.
Dragon will carry back to Earth thousands of pounds of supplies and scientific experiments designed to take advantage of the space station’s microgravity environment. Splashing down off the coast of Florida enables quick transportation of the experiments to NASA’s Space Systems Processing Facility at Kennedy Space Center, allowing researchers to collect data with minimal sample exposure to Earth’s gravity.
Scientific hardware and samples returning to Earth include GISMOS (Genes in Space Molecular Operations and Sequencing), which successfully conducted in-orbit sequencing of microbial DNA from the space station water system, and marks the first real look at the microbial population of the water system. In addition, SpaceTED (Space Tissue Equivalent Dosimeter) returns to Earth after collecting data on crew radiation exposure and characterizes the space radiation environment. The dosimeter is a student-developed technology demonstration and effectively operated for 11 months on station – six months longer than intended because of its success.
Additionally, two specimens printed with ESA’s (European Space Agency) Metal 3D Printer, will go to researchers for post-processing and analysis. Researchers will compare the specimens printed in microgravity with those printed on Earth. The goal is to demonstrate the capability to perform metal deposition, or the layering of metals, in 3D under sustained microgravity conditions and manufacture test specimens. Researchers aim to understand the performance and limitations of the chosen technology and become familiar with crewed and remote operations of the instrument onboard a space habitat.
Also returning on spacecraft is the International Space Art and Poetry Contest, which invited students and educators around the world to submit drawings, paintings, or poems. Winning art submissions were printed on station, photographed in the cupola, and will be returned to their creators on Earth. In addition, Plasmonic Bubbles researchers will observe high-speed video of bubble behavior in microgravity to understand fundamental processes that occur on a heated bubble surface. Results may improve understanding of how molecules are deposited on bubble surfaces and enhance detection methods for health care and environmental industries.
For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of its Artemis campaign in preparation for future human missions to Mars.
Get breaking news, images and features from the space station on Instagram, Facebook, and X.
Learn more about the International Space Station at:
https://www.nasa.gov/international-space-station
-end-
Claire O’Shea / Joshua Finch
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Dec 02, 2024 LocationNASA Headquarters Related Terms
International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center SpaceX Commercial Resupply View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.