Jump to content

SpaceX - Falcon 9 and Dragon Rocket Model


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An artist’s concept of SpaceX’s Starship Human Landing System (HLS) on the Moon. NASA is working with SpaceX to develop the Starship HLS to carry astronauts from lunar orbit to the Moon’s surface and back for Artemis III and Artemis IV. Starship HLS is roughly 50 meters tall, or about the length of an Olympic swimming pool. SpaceX This artist’s concept depicts a SpaceX Starship tanker (bottom) transferring propellant to a Starship depot (top) in low Earth orbit. Before astronauts launch in Orion atop the agency’s SLS (Space Launch System) rocket, SpaceX will launch a storage depot to Earth orbit. For the Artemis III and Artemis IV missions, SpaceX plans to complete propellant loading operations in Earth orbit to send a fully fueled Starship Human Landing System (HLS) to the Moon. SpaceX An artist’s concept shows how a crewed Orion spacecraft will dock to SpaceX’s Starship Human Landing System (HLS) in lunar orbit for Artemis III. Starship HLS will dock directly to Orion so that two astronauts can transfer to the lander to descend to the Moon’s surface, while two others remain in Orion. Beginning with Artemis IV, NASA’s Gateway lunar space station will serve as the crew transfer point. SpaceX The artist’s concept shows two Artemis III astronauts preparing to step off the elevator at the bottom of SpaceX’s Starship HLS to the Moon’s surface. At about 164 feet (50 m), Starship HLS will be about the same height as a 15-story building. (SpaceX)The elevator will be used to transport crew and cargo between the lander and the surface. SpaceX NASA is working with U.S. industry to develop the human landing systems that will safely carry astronauts from lunar orbit to the surface of the Moon and back throughout the agency’s Artemis campaign.
      For Artemis III, the first crewed return to the lunar surface in over 50 years, NASA is working with SpaceX to develop the company’s Starship Human Landing System (HLS). Newly updated artist’s conceptual renders show how Starship HLS will dock with NASA’s Orion spacecraft in lunar orbit, then two Artemis crew members will transfer from Orion to Starship and descend to the surface. There, astronauts will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. Prior to the crewed Artemis III mission, SpaceX will perform an uncrewed landing demonstration mission on the Moon.
      NASA is also working with SpaceX to further develop the company’s Starship lander to meet an extended set of requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer.
      The artist’s concept portrays SpaceX’s Starship HLS with two Raptor engines lit performing a braking burn prior to its Moon landing. The burn will occur after Starship HLS departs low lunar orbit to reduce the lander’s velocity prior to final descent to the lunar surface. SpaceX With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      Peru’s Vice Minister of Defense Policies for Ministry of Defense César Medardo Torres Vega, NASA Administrator Bill Nelson, and Director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Maj. Gen. Roberto Melgar Sheen meet in Lima, Peru, Nov. 14, 2024, where the U.S. and Peru signed a memorandum of understanding agreeing to study a potential sounding rocket campaign.Credit: U.S. Embassy Peru NASA and Peru’s National Commission for Aerospace Research and Development (CONIDA) laid the groundwork for a potential multi-year scientific rocket launch campaign in the South American country.
      Both countries signed a non-binding memorandum of understanding Thursday that includes safety training, a joint feasibility study for the potential campaign, and technical assistance for CONIDA on sounding rocket launches. Sounding rockets are small, low-cost rockets that provide suborbital access to space.
      “We are excited to look at the possibility of once again launching sounding rockets from Peru,” said NASA Administrator Bill Nelson, who signed on behalf of the United States. “This agreement deepens our international partnership with Peru and the scientific research we conduct because of the country’s location along the magnetic equator. Together we will go farther.” 
      Maj. Gen. Roberto Melgar Sheen, head of CONIDA, signed on behalf of Peru. Brian Nichols, assistant secretary for Western Hemisphere Affairs for the U.S. State Department, and Stephanie Syptak-Ramnath, U.S. ambassador to Peru, also participated, among other Peruvian officials. The event took place during the week of the Asia-Pacific Economic Cooperation forum beginning Nov. 9 in Lima.
      During his visit to Peru, Nelson also discussed the importance of international partnerships and collaboration in space and celebrated Peru’s signing of the Artemis Accords earlier this year.
      The United States and Peru have a long history of space cooperation. NASA conducted sounding rocket campaigns at CONIDA’s Punta Lobos launch base in 1975 and 1983.
      NASA uses sounding rockets to carry scientific instruments into space on suborbital flights to collect important science data and test prototype instruments. They yield invaluable data that enhance our understanding of Earth’s atmosphere and weather, our solar system, and the universe, and test equipment for deeper space travel.
      Understanding our Earth’s atmosphere and how it is influenced by the Sun is crucial to protecting ground and space-based assets that we rely on every day, from the power grid to weather data and even navigation. 
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Nov 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Sounding Rockets View the full article
    • By NASA
      NASA's SpaceX 31st Cargo Resupply Services Launch
    • By NASA
      The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.Credits: NASA Following a successful launch of NASA’s SpaceX 31st commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.
      The SpaceX Dragon spacecraft, carrying more than 6,000 pounds of supplies to the orbiting laboratory, lifted off at 9:29 p.m. EST Monday, on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live coverage of the spacecraft’s arrival will begin at 8:45 a.m. Tuesday, Nov. 5, on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.
      The spacecraft is scheduled to autonomously dock at approximately 10:15 a.m. to the forward port of the space station’s Harmony module.
      The resupply mission will support dozens of research experiments conducted during Expedition 72. In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials.
      These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and lays the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future expeditions to Mars.
      The Dragon spacecraft is scheduled to remain at the space station until December when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of Florida.
      Learn more about space station activities by following @space_station and @ISS_Research on X, as well as the ISS Facebook, ISS Instagram, and the space station blog.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-31
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Creating a golden streak in the night sky, a SpaceX Falcon 9 rocket soars upward after liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on March 14, 2023, on the company’s 27th Commercial Resupply Services mission for the agency to the International Space Station. SpaceX NASA invites the public to participate in virtual activities ahead of the launch of SpaceX’s 31st commercial resupply services mission for the agency. NASA and SpaceX are targeting 9:29 p.m. EST Monday, Nov. 4, for the SpaceX Dragon spacecraft to launch on the company’s Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the COronal Diagnostic EXperiment to examine solar wind and how it forms, as well as Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity and an investigation that studies how space impacts different materials
      Members of the public can register to attend the launch virtually. As a virtual guest, you’ll gain access to curated resources, interactive opportunities, and mission-specific information delivered straight to your inbox. Following liftoff, virtual guests will receive a commemorative stamp for their virtual guest passport
      Learn more about NASA research and activities on the International Space Station at:
      https://www.nasa.gov/station
      View the full article
  • Check out these Videos

×
×
  • Create New...