Jump to content

SpaceX - Falcon 9 and Dragon Rocket Model


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Download PDF: Contact Dynamics Predictions Utilizing theNESC Parameterless Contact Model

      Modeling the capture of the Mars Sample Return (MSR) Orbiting Sample (OS) involves understanding complex dynamic behavior, which includes the OS making contact against the interior of the capture enclosure. The MSR Program required numerical verification of the contact dynamics’ predictions produced using their commercial software tools. This commercial software used “free” parameters to set up the contact modeling. Free parameters (also known as free variables) are not based on contact physics. The commercial contact model used by MSR
      required seven free parameters including a Hertzian contact stiffness, surface penetration, stiffening exponent, penetration velocity, contact damping, maximum penetration depth for the contact damping value, and a smoothing function. An example of a parameter that is not free is coefficient of friction, which is a physics-based parameter. Consider the free parameter, contact stiffness. Contact stiffness is already present in the finite element model’s (FEM) stiffness matrix where the bodies come into contact, and surface penetration is disallowed in a physically realizable contact model, as FEM meshes should not penetrate one another during contact (i.e., the zero-contact limit penetration constraint condition).
      As such, with each set of selected free parameters generating a different contact force signature, additional numerical verification is required to guide setting these parameters. Contact modeling is nonlinear. This means that the stiffness matrices of contacting bodies are continuously updated as the bodies come into contact, potentially recontact (due to vibrations), and disengage. The modal properties of contacting bodies continuously change with state transitions (e.g., stick-to-slip). Some contact models have been proposed and incorporated in commercial finite element analysis solvers, and most involve static loading. A relatively smaller number involve dynamics, which has historically proven challenging.

      In 2005, NASA conducted a study testing several commercial contact solvers in predicting contact forces in transient dynamic environments. This was necessitated by the Space Shuttle Program (SSP)—after the February 2003 Columbia accident— deciding to include contact dynamics in the Space Shuttle transient coupled loads analysis (CLA) to capture the impact of contact nonlinearities. This rendered the entire CLA nonlinear. The study found major difficulties executing nonlinear CLAs in commercial software. A nonlinear solver developed by the NESC and Applied Structural Dynamics (ASD) that was able to produce physically realizable results was numerically verified by NASA and later experimentally validated as well. This nonlinear solver was subsequently utilized to execute all NASA SSP CLAs (i.e., crewed space flights) from 2005 to the final flight in 2011, as well as currently supporting the SLS Program.
      The objective of the MSR contact verification work was to provide data that could be used by the MSR team to help define the free parameters listed above for the commercial tool contact model. The NESC/ASD solver was used to model contact between simple cantilever and free beams, deriving contact forces and relative displacements. These resulting data can be used to determine parameter values for more complex structures. Two of the modeled configurations, one for axial contact (Figure 1) and the other for stick/friction (Figure 2), and sample results from the NESC nonlinear dynamic analyses are presented in Figures 1 and 2.

      For information, contact:
      Dr. Dexter Johnson dexter.johnson@nasa.gov
      Dr. Arya Majed arya.majed@nasa.gov
      View the full article
    • By European Space Agency
      Image: Fit for service: Themis reusable rocket stage demonstrator View the full article
    • By NASA
      At Goddard Space Flight Center, the GSFC Data Science Group has completed the testing for their SatVision Top-of-Atmosphere (TOA) Foundation Model, a geospatial foundation model for coarse-resolution all-sky remote sensing imagery. The team, comprised of Mark Carroll, Caleb Spradlin, Jordan Caraballo-Vega, Jian Li, Jie Gong, and Paul Montesano, has now released their model for wide application in science investigations.
      Foundation models can transform the landscape of remote sensing (RS) data analysis by enabling the pre-training of large computer-vision models on vast amounts of remote sensing data. These models can be fine-tuned with small amounts of labeled training and applied to various mapping and monitoring applications. Because most existing foundation models are trained solely on cloud-free satellite imagery, they are limited to applications of land surface or require atmospheric corrections. SatVision-TOA is trained on all-sky conditions which enables applications involving atmospheric variables (e.g., cloud or aerosol).
      SatVision TOA is a 3 billion parameter model trained on 100 million images from Moderate Resolution Imaging Spectroradiometer (MODIS). This is, to our knowledge, the largest foundation model trained solely on satellite remote sensing imagery. By including “all-sky” conditions during pre-training, the team incorporated a range of cloud conditions often excluded in traditional modeling. This enables 3D cloud reconstruction and cloud modeling in support of Earth and climate science, offering significant enhancement for large-scale earth observation workflows.
      With an adaptable and scalable model design, SatVision-TOA can unify diverse Earth observation datasets and reduce dependency on task-specific models. SatVision-TOA leverages one of the largest public datasets to capture global contexts and robust features. The model could have broad applications for investigating spectrometer data, including MODIS, VIIRS, and GOES-ABI. The team believes this will enable transformative advancements in atmospheric science, cloud structure analysis, and Earth system modeling.
      The model architecture and model weights are available on GitHub and Hugging Face, respectively. For more information, including a detailed user guide, see the associated white paper: SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery. 
      Examples of image reconstruction by SatVision-TOA. Left: MOD021KM v6.1 cropped image chip using MODIS bands [1, 3, 2]. Middle: The same images with randomly applied 8×8 mask patches, masking 60% of the original image. Right: The reconstructed images produced by the model, along with their respective Structural Similarity Index Measure (SSIM) scores. These examples illustrate the model’s ability to preserve structural detail and reconstruct heterogeneous features, such as cloud textures and land-cover transitions, with high fidelity.NASAView the full article
    • By NASA
      4 min read
      Expanded AI Model with Global Data Enhances Earth Science Applications 
      On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Data from Landsat 8 were used to train the Prithvi artificial intelligence model, which can help detect burn scars. NASA Earth Observatory NASA, IBM, and Forschungszentrum Jülich have released an expanded version of the open-source Prithvi Geospatial artificial intelligence (AI) foundation model to support a broader range of geographical applications. Now, with the inclusion of global data, the foundation model can support tracking changes in land use, monitoring disasters, and predicting crop yields worldwide. 
      The Prithvi Geospatial foundation model, first released in August 2023 by NASA and IBM, is pre-trained on NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset and learns by filling in masked information. The model is available on Hugging Face, a data science platform where machine learning developers openly build, train, deploy, and share models. Because NASA releases data, products, and research in the open, businesses and commercial entities can take these models and transform them into marketable products and services that generate economic value. 
      “We’re excited about the downstream applications that are made possible with the addition of global HLS data to the Prithvi Geospatial foundation model. We’ve embedded NASA’s scientific expertise directly into these foundation models, enabling them to quickly translate petabytes of data into actionable insights,” said Kevin Murphy, NASA chief science data officer. “It’s like having a powerful assistant that leverages NASA’s knowledge to help make faster, more informed decisions, leading to economic and societal benefits.”
      AI foundation models are pre-trained on large datasets with self-supervised learning techniques, providing flexible base models that can be fine-tuned for domain-specific downstream tasks.
      Crop classification prediction generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. Focusing on diverse land use and ecosystems, researchers selected HLS satellite images that represented various landscapes while avoiding lower-quality data caused by clouds or gaps. Urban areas were emphasized to ensure better coverage, and strict quality controls were applied to create a large, well-balanced dataset. The final dataset is significantly larger than previous versions, offering improved global representation and reliability for environmental analysis. These methods created a robust and representative dataset, ideal for reliable model training and analysis. 
      The Prithvi Geospatial foundation model has already proven valuable in several applications, including post-disaster flood mapping and detecting burn scars caused by fires.
      One application, the Multi-Temporal Cloud Gap Imputation, leverages the foundation model to reconstruct the gaps in satellite imagery caused by cloud cover, enabling a clearer view of Earth’s surface over time. This approach supports a variety of applications, including environmental monitoring and agricultural planning.  
      Another application, Multi-Temporal Crop Segmentation, uses satellite imagery to classify and map different crop types and land cover across the United States. By analyzing time-sequenced data and layering U.S. Department of Agriculture’s Crop Data, Prithvi Geospatial can accurately identify crop patterns, which in turn could improve agricultural monitoring and resource management on a large scale. 
      The flood mapping dataset can classify flood water and permanent water across diverse biomes and ecosystems, supporting flood management by training models to detect surface water. 
      Wildfire scar mapping combines satellite imagery with wildfire data to capture detailed views of wildfire scars shortly after fires occurred. This approach provides valuable data for training models to map fire-affected areas, aiding in wildfire management and recovery efforts.
      Burn scar mapping generated by NASA and IBM’s open-source Prithvi Geospatial artificial intelligence model. This model has also been tested with additional downstream applications including estimation of gross primary productivity, above ground biomass estimation, landslide detection, and burn intensity estimations. 
      “The updates to this Prithvi Geospatial model have been driven by valuable feedback from users of the initial version,” said Rahul Ramachandran, AI foundation model for science lead and senior data science strategist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “This enhanced model has also undergone rigorous testing across a broader range of downstream use cases, ensuring improved versatility and performance, resulting in a version of the model that will empower diverse environmental monitoring applications, delivering significant societal benefits.”
      The Prithvi Geospatial Foundation Model was developed as part of an initiative of NASA’s Office of the Chief Science Data Officer to unlock the value of NASA’s vast collection of science data using AI. NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT), based at Marshall, IBM Research, and the Jülich Supercomputing Centre, Forschungszentrum, Jülich, designed the foundation model on the supercomputer Jülich Wizard for European Leadership Science (JUWELS), operated by Jülich Supercomputing Centre. This collaboration was facilitated by IEEE Geoscience and Remote Sensing Society.  
      For more information about NASA’s strategy of developing foundation models for science, visit https://science.nasa.gov/artificial-intelligence-science.
      Share








      Details
      Last Updated Dec 04, 2024 Related Terms
      Earth Science & Research Explore More
      9 min read Towards Autonomous Surface Missions on Ocean Worlds


      Article


      23 hours ago
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      23 hours ago
      1 min read Coming Spring 2025: Planetary Defenders Documentary
      ow would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders…


      Article


      23 hours ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      The SpaceX Dragon spacecraft departs the International Space Station as it orbits 264 miles above the south Pacific Ocean northeast of New Zealand.Credit: NASA NASA and its international partners are set to receive scientific research samples and hardware as a SpaceX Dragon spacecraft departs the International Space Station on Thursday, Dec. 5, for its return to Earth.
      NASA’s live coverage of undocking and departure begins at 10:50 a.m. EST on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      The Dragon spacecraft will undock from the forward port of the space station’s Harmony module at 11:05 a.m., and fire its thrusters to move a safe distance away from the station after receiving a command from ground controllers at SpaceX.
      After re-entering Earth’s atmosphere, the spacecraft will splash down off the coast of Florida. NASA will not stream the splashdown and will post updates on the agency’s space station blog.
      Filled with nearly 6,000 pounds of crew supplies, science investigations, and equipment, the spacecraft arrived to the orbiting laboratory Nov. 5 after it launched Nov. 4 on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for the agency’s SpaceX 31st commercial resupply services mission.
      Dragon will carry back to Earth thousands of pounds of supplies and scientific experiments designed to take advantage of the space station’s microgravity environment. Splashing down off the coast of Florida enables quick transportation of the experiments to NASA’s Space Systems Processing Facility at Kennedy Space Center, allowing researchers to collect data with minimal sample exposure to Earth’s gravity.
      Scientific hardware and samples returning to Earth include GISMOS (Genes in Space Molecular Operations and Sequencing), which successfully conducted in-orbit sequencing of microbial DNA from the space station water system, and marks the first real look at the microbial population of the water system. In addition, SpaceTED (Space Tissue Equivalent Dosimeter) returns to Earth after collecting data on crew radiation exposure and characterizes the space radiation environment. The dosimeter is a student-developed technology demonstration and effectively operated for 11 months on station – six months longer than intended because of its success.
      Additionally, two specimens printed with ESA’s (European Space Agency) Metal 3D Printer, will go to researchers for post-processing and analysis. Researchers will compare the specimens printed in microgravity with those printed on Earth. The goal is to demonstrate the capability to perform metal deposition, or the layering of metals, in 3D under sustained microgravity conditions and manufacture test specimens. Researchers aim to understand the performance and limitations of the chosen technology and become familiar with crewed and remote operations of the instrument onboard a space habitat.
      Also returning on spacecraft is the International Space Art and Poetry Contest, which invited students and educators around the world to submit drawings, paintings, or poems. Winning art submissions were printed on station, photographed in the cupola, and will be returned to their creators on Earth. In addition, Plasmonic Bubbles researchers will observe high-speed video of bubble behavior in microgravity to understand fundamental processes that occur on a heated bubble surface. Results may improve understanding of how molecules are deposited on bubble surfaces and enhance detection methods for health care and environmental industries.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of its Artemis campaign in preparation for future human missions to Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station at:
      https://www.nasa.gov/international-space-station
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Dec 02, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center SpaceX Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...