Members Can Post Anonymously On This Site
Falcon 9 Two Engine Test
-
Similar Topics
-
By NASA
This is a test article in the live site I added this image
/wp-content/plugins/nasa-blocks/assets/images/media/media-example-01.jpgThis landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.NASA, ESA, CSA, and STScIView the full article
-
By NASA
NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.
NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The group toured the south Mississippi NASA center on March 19, learning how NASA Stennis operates as NASA’s primary, and America’s largest, rocket propulsion test site to serve the nation and commercial sector with its unique capabilities and expertise.
NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The day included tours of test stands and facilities hosted by NASA Stennis test complex personnel. Visits included the Fred Haise Test Stand, where NASA Stennis tests RS-25 engines to help power NASA’s Artemis missions to the Moon and beyond; the Thad Cochran Test Stand, where NASA Stennis will test NASA’s exploration upper stage for future Artemis missions; the E Test Complex, where NASA Stennis supports agency and commercial propulsion test activity; and the L3Harris Technologies (formerly Aerojet Rocketdyne) Engine Assembly Facility, where RS-25 engines are produced.
NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The group also received overviews from site personnel on the Rocket Propulsion Test Program Office located at NASA Stennis, on lessons learned from testing at the E Test Complex, and on the NASA Data Acquisition System developed onsite.
NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The Rocket Test Group originally formed in response to a congressional demand for an ongoing working group crossing agency and company boundaries. It is a volunteer organization intended to allow rocket test facility operators to come together to recommend solutions for difficult testing problems; lower testing costs by reducing time spent on solving critical issues and eliminating duplicate programs; facilitate the activation of new facilities; learn from each other by viewing different methods and touring various facilities; provide a networking opportunity for testing advice and problem solving support; and allow test facility operators to stay informed on the newest developments.
NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.L3Harris TechnologiesView the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s X-59 quiet supersonic research aircraft sits on a ramp at Lockheed Martin Skunk Works in Palmdale, California, during sunset. The one-of-a-kind aircraft is powered by a General Electric F414 engine, a variant of the engines used on F/A-18 fighter jets. The engine is mounted above the fuselage to reduce the number of shockwaves that reach the ground. The X-59 is the centerpiece of NASA’s Quesst mission, which aims to demonstrate quiet supersonic flight and enable future commercial travel over land – faster than the speed of sound.Lockheed Martin Corporation/Garry Tice The team behind NASA’s X-59 completed another critical ground test in March, ensuring the quiet supersonic aircraft will be able to maintain a specific speed during operation. The test, known as engine speed hold, is the latest marker of progress as the X-59 nears first flight this year.
“Engine speed hold is essentially the aircraft’s version of cruise control,” said Paul Dees, NASA’s X-59 deputy propulsion lead at the agency’s Armstrong Flight Research Center in Edwards, California. “The pilot engages speed hold at their current speed, then can adjust it incrementally up or down as needed.”
The X-59 team had previously conducted a similar test on the engine – but only as an isolated system. The March test verified the speed hold functions properly after integration into the aircraft’s avionics.
“We needed to verify that speed hold worked not just within the engine itself but as part of the entire aircraft system.” Dees explained. “This test confirmed that all components – software, mechanical linkages, and control laws – work together as intended.”
The successful test confirmed the aircraft’s ability to precisely control speed, which will be invaluable during flight. This capability will increase pilot safety, allowing them to focus on other critical aspects of flight operation.
“The pilot is going to be very busy during first flight, ensuring the aircraft is stable and controllable,” Dees said. “Having speed hold offload some of that workload makes first flight that much safer.”
The team originally planned to check the speed hold as part of an upcoming series of ground test trials where they will feed the aircraft with a robust set of data to verify functionality under both normal and failure conditions, known as aluminum bird tests. But the team recognized a chance to test sooner.
“It was a target of opportunity,” Dees said. “We realized we were ready to test engine speed hold separately while other systems continued with finalizing their software. If we can learn something earlier, that’s always better.”
With every successful test, the integrated NASA and Lockheed Martin team brings the X-59 closer to first flight, and closer to making aviation history through quiet supersonic technology.
Share
Details
Last Updated Mar 26, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston.
In one of the first uses of the auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, managers announce the prime and backup Gemini III crews. NASA NASA astronauts Virgil “Gus” Grissom and John Young, the Gemini III prime crew. NASA Grissom, foreground, and Young in their capsule prior to launch.NASA On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.
Liftoff of Gemini III.NASA The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad.
The Mission Control Center at Cape Kennedy in Florida during Gemini III, controlling a human spaceflight for the final time.NASA The Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, monitoring the Gemini III mission.NASA Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility.
Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.
Shortly after splashdown, Gemini III astronaut Virgil “Gus” Grissom exits the spacecraft as crewmate John Young waits in the life raft. NASA Sailors hoist the Gemini III spacecraft aboard the prime recovery ship U.S.S. Intrepid.NASA Young, left, and Grissom stand with their spacecraft aboard Intrepid. NASA Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds.
Gemini III astronauts Virgil “Gus” Grissom, left, and John Young upon their return to Cape Kennedy in Florida. NASA Grissom and Young at the postflight press conference. NASA The welcome home ceremony for Grissom and Young at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.NASA A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission.
During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission. NASA
Explore More
5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight
Article 12 months ago 6 min read 60 Years Ago: Uncrewed Gemini 2 Paves the Way for the First Crewed Mission
Article 2 months ago 6 min read Artemis I Mission Control at a Glance
Article 3 years ago View the full article
-
By USH
Researchers utilizing publicly available Synthetic Aperture Radar (SAR) data from Capella Space and Umbra have uncovered significant hidden structures within and beneath the CFR Pyramid on the Giza Plateau. The study reveals five distinct "Zed" structures located above what was previously believed to be the pharaoh’s burial chamber, resembling similar formations found in the Khufu Pyramid. These structures are connected by geometric pathways, with additional secondary formations identified through satellite imaging.
Source and credit images: The Reese report / The Kafre Research Project.
Most notably, eight vertically aligned cylindrical structures, arranged in two parallel rows from north to south, extend 648 meters underground. These formations merge into two massive cubic structures, each approximately 80 meters per side. Tomographical analysis indicates that the cylindrical structures function as hollow wells surrounded by descending spiral pathways.
Further research suggests that these subterranean formations are not limited to the CFR Pyramid but extend beneath the Khufu and Menkaure pyramids as well, reaching depths of approximately two kilometers. The study marks a groundbreaking advancement in the understanding of the Giza Plateau’s underground complexity,
The discoveries surrounding the CFR Pyramid represent just the tip of a vast and complex structure beneath the Giza Plateau.If confirmed, this discovery could challenge mainstream Egyptology’s belief that the pyramids were simply royal tombs.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.