Jump to content

ESA contract to advance Vega-C competitiveness


Recommended Posts

Artist's view of Vega-C

ESA’s Vega-C launch vehicle will fly in the second quarter of 2022 offering more performance to all orbits and extended mission flexibility at a similar cost to the current Vega. A new contract aims to widen these mission capabilities to capture new opportunities and satisfy emerging market needs to 2027.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Selects Two Teams to Advance Life Sciences Research in Space 
      NASA announced two awards Thursday to establish scientific consortia – multi-institutional coalitions to conduct ground-based studies that help address the agency’s goals of maintaining a sustained human presence in space. These consortia will focus on biological systems research in the areas of animal and human models, plants, and microbiology. When fully implemented, the awards for these consortia will total about $5 million. 
      Space biology efforts at NASA use the unique environment of space to conduct experiments impossible to do on Earth. Such research not only supports the health and welfare of astronauts, but results in breakthroughs on diseases such as cancer and neurodegenerative disorders to help protect humanity down on the ground.  
      The awards for the two consortia are for the following areas:  
      Studying space biosphere. The Biology in Space: Establishing Networks for DUrable & REsilient Systems consortium involves a collaborative effort between human/animal, plant, and microbial biologists to ensure an integrated view of the space flight biosphere by enhancing data acquisition, modeling, and testing. It will include participation of more than thirty scientists and professionals working together from at least three institutions. Led by Kristi Morgansen at the University of Washington in Seattle, Washington.    Converting human waste into materials for in-space biomanufacturing. The Integrative Anaerobic Digestion and Phototrophic Biosystem for Sustainable Space Habitats and Life Supports consortium will develop an anaerobic digestion process that converts human waste into organic acids and materials that can be used for downstream biomanufacturing applications in space. It will include eight scientists from six different institutions in three different states, including Delaware and Florida. The consortium is led by Yinjie Tang at Washington University in St. Louis, Missouri.    Proposals for these consortia were submitted in response to ROSES 2024 Program Element E.11 Consortium in Biological Sciences for a consortium with biological sciences expertise to carry out research investigations and conduct activities that address NASA’s established interests in space life sciences.  
      NASA’s Space Biology Program within the agency’s Biological and Physical Sciences division conducts research across a wide spectrum of biological organization and model systems to probe underlying mechanisms by which organisms acclimate to stressors encountered during space exploration (including microgravity, ionizing radiation, and elevated concentrations of carbon dioxide). This research informs how biological systems regulate and sustain growth, metabolism, reproduction, and development in space and how they repair damage and protect themselves from infection and disease. 
      For more information about NASA’s fundamental space-based research, visit https://science.nasa.gov/biological-physical
      Share








      Details
      Last Updated Oct 17, 2024 Contact NASA Science Editorial Team Location NASA Headquarters Related Terms
      Biological & Physical Sciences For Researchers Research Opportunities in Space and Earth Sciences (ROSES) Science & Research View the full article
    • By European Space Agency
      ESA has signed a contract with OHB Italia SpA worth €63 million to begin preparatory work on the Agency’s proposed Ramses mission to the infamous asteroid Apophis.
      View the full article
    • By European Space Agency
      Video: 00:03:27 On Saturday 5 and Sunday 6 October 2024, the European Space Agency opened the doors to the European Space Research and Technology Centre, ESTEC, in the Netherlands, welcoming some 9000 visitors to its 13th annual Open Day. As in previous years, ESA’s largest establishment in Europe invited the public to meet space engineers, astronauts and to see actual space hardware. Attendees explored state-of-the-art facilities, interacted with ESA and NASA astronauts and discovered various job opportunities at ESA. There was also a full schedule of talks from Space Rocks, celebrating the art and culture of science and space.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This mosaic from ESA’s Euclid space telescope contains 260 observations in visible and infrared light. It covers 132 square degrees, or more than 500 times the area of the full Moon, and is 208 gigapixels. This is 1% of the wide survey that Euclid will capture during its six-year mission.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This section of the Euclid mosaic is zoomed in 36 times, revealing the core of galaxy cluster Abell 3381, 470 million light-years from Earth. The image, made using both visible and infrared light, shows galaxies of different shapes and sizes, including elliptical, spiral, and dwarf galaxies.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This image shows an area of the Euclid mosaic zoomed in 150 times. The combination of visible and infrared light reveals galaxies that are interacting with each other in cluster Abell 3381, 470 million light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO The location and actual size of the newly released Euclid mosaic is highlighted in yellow on a map of the entire sky captured by ESA’s Planck mission and a star map from ESA’s Gaia mission. ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA and the Planck Collaboration. CC BY-SA 3.0 IGO With contributions from NASA, the mission will map a third of the sky in order to study a cosmic mystery called dark energy.
      ESA (the European Space Agency) has released a new, 208-gigapixel mosaic of images taken by Euclid, a mission with NASA contributions that launched in 2023 to study why the universe is expanding at an accelerating rate. Astronomers use the term “dark energy” in reference to the unknown cause of this accelerated expansion.
      The new images were released at the International Astronautical Congress in Milan on Oct. 15.
      The mosaic contains 260 observations in visible and infrared light made between March 25 and April 8 of this year. In just two weeks, Euclid covered 132 square degrees of the southern sky — more than 500 times the area of the sky covered by a full Moon.
      The mosaic accounts for 1% of the wide survey Euclid will conduct over six years. During this survey, the telescope observes the shapes, distances, and motions of billions of galaxies out to a distance of more than 10 billion light-years. By doing this, it will create the largest 3D cosmic map ever made.
      https://www.youtube.com/watch?v=86ZCsUfgLRQ Dive into a snippet of the great cosmic atlas being produced by the ESA Euclid mission. This video zooms in on a 208-gigapixel mosaic containing about 14 million galaxies and covering a portion of the southern sky more than 500 times the area of the full Moon as seen from Earth. Credit: ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi; ESA/Gaia/DPAC; ESA/Planck Collaboration This first piece of the map already contains around 100 million stars and galaxies. Some 14 million of these galaxies could be used by Euclid to study the hidden influence of dark energy on the universe.
      “We have already seen beautiful, high-resolution images of individual objects and groups of objects from Euclid. This new image finally gives us a taste of the enormity of the area of sky Euclid will cover, which will enable us to take detailed measurements of billions of galaxies,” said Jason Rhodes, an observational cosmologist at NASA’s Jet Propulsion Laboratory in Southern California who is the U.S. science lead for Euclid and principal investigator for NASA’s Euclid dark energy science team.
      Galaxies Galore
      Even though this patch of space shows only 1% of Euclid’s total survey area, the spacecraft’s sensitive cameras captured an incredible number of objects in great detail. Enlarging the image by a factor of 600 reveals the intricate structure of a spiral galaxy in galaxy cluster Abell 3381, 470 million light-years away.
      This section of the Euclid mosaic is zoomed in 600 times. A single spiral galaxy is visible in great detail within cluster Abell 3381, 470 million light-years away from us. Data from both the visible and infrared light instruments on Euclid are included. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO “What really strikes me about these new images is the tremendous range in physical scale,” said JPL’s Mike Seiffert, project scientist for the NASA contribution to Euclid. “The images capture detail from clusters of stars near an individual galaxy to some of the largest structures in the universe. We are beginning to see the first hints of what the full Euclid data will look like when it reaches the completion of the prime survey.”
      Visble as well are clouds of gas and dust located between the stars in our own galaxy. Sometimes called “galactic cirrus” because they look like cirrus clouds at Earth, these clouds can be observed by Euclid’s visible-light camera because they reflect visible light from the Milky Way.
      The mosaic released today is taste of what’s to come from Euclid. The mission plans to release 53 square degrees of the Euclid survey, including a preview of the Euclid Deep Field areas, in March 2025 and to release its first year of cosmology data in 2026.
      NASA’s forthcoming Nancy Grace Roman mission will also study dark energy — in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work. Scheduled to launch by May 2027, Roman will study a smaller section of sky than Euclid but will provide higher-resolution images of millions of galaxies and peer deeper into the universe’s past, providing complementary information. In addition, Roman will survey nearby galaxies, find and investigate planets throughout our galaxy, study objects on the outskirts of our solar system, and more.
      More About Euclid
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
      For more information about Euclid go to:
      https://www.nasa.gov/mission_pages/euclid/main/index.html
      For more information about Roman, go to:
      https://roman.gsfc.nasa.gov
      News Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      ESA Media Relations
      media@esa.int
      2024-141
      Share
      Details
      Last Updated Oct 15, 2024 Related Terms
      Euclid Astrophysics Dark Energy Dark Matter Galaxies Jet Propulsion Laboratory The Universe Explore More
      8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the…
      Article 2 hours ago 5 min read Journey to a Water World: NASA’s Europa Clipper Is Ready to Launch
      Article 2 days ago 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      On 15 October 2024, ESA’s Euclid space mission reveals the first piece of its great map of the Universe, showing millions of stars and galaxies.
      View the full article
  • Check out these Videos

×
×
  • Create New...