Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      2 min read
      NASA Science: Being Responsive to Executive Orders
      February 18, 2025
      To the NASA Science Community – 
      As the nation’s leader in Earth and space science, NASA Science operates within the broader context of the federal government and its priorities. As part of the Executive Branch, we are always responsive to the direction set by the Administration, including executive orders and policy guidance that relate to our programs and activities. 
      We are working as quickly as possible to implement these Executive Orders and related policies. We understand that these priorities can have tangible effects on our community, from potential changes in solicitations and mission planning to impacts on grants and research programs. We recognize that uncertainty can be challenging but we are committed to keeping you as informed as possible as we comply with these changes.  
      Our goal remains steadfast: to support groundbreaking science that advances knowledge and benefits society. As we work through these transitions, we are engaging with stakeholders, assessing implications, and ensuring that we continue to deliver on NASA’s science mission.  
      We appreciate your patience and dedication, and we will share more details as they become available. Thank you for your continued partnership in advancing NASA Science for the benefit of the nation. 
      -Nicky Fox
      Associate Administrator, NASA Science Mission Directorate 
      Share








      Details
      Last Updated Feb 18, 2025 Related Terms
      Science Mission Directorate Explore More
      5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging


      Article


      4 hours ago
      2 min read Hubble Captures a Cosmic Cloudscape


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      2 weeks ago
      View the full article
    • By NASA
      October 1, 2022 – September 30, 2023
      This eighth annual report provides an overall highlight of research results published from October 1, 2022 to September 30, 2023 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2022 – September 30, 2023) (PDF, 19.6 MB).
      List of Archived ISS Publications October 1, 2022 – September 30, 2023. (PDF, 1.2 MB)
      October 1, 2021 – September 30, 2022
      This seventh annual report provides an overall highlight of research results published from October 1, 2021 to September 30, 2022 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2021 – September 30, 2022) (PDF, 7.0 MB).
      List of Archived ISS Publications October 1, 2021 – September 30, 2022. (PDF, 1.2 MB)
      October 1, 2020 – October 1, 2021
      This sixth annual report provides an overall highlight of research results published from October 1, 2020 to October 1, 2021 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2020 – October 1, 2021) (PDF, 7.0 MB)
      October 1, 2019 – October 1, 2020
      This fifth annual report provides an overall highlight of research results published from October 1, 2019 to October 1, 2020 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2019 – October 1, 2020) (PDF, 7.0 MB)
      October 1, 2018 – October 1, 2019
      This fourth annual report provides an overall highlight of research results published from October 1, 2018 to October 1, 2019 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2018 – October 1, 2019) (PDF, 3.0 MB)    
      October 1, 2017 – October 1, 2018
      This third annual report provides an overall highlight of research results published from October 1, 2017 to October 1, 2018 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2017 – October 1, 2018) (PDF, 5.8MB)   
      October 1, 2016 – October 1, 2017
      This second annual report provides an overall highlight of research results published from October 1, 2016 to October 1, 2017 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2016 – October 1, 2017) (PDF, 5MB)  
      October 1, 2015 – October 1, 2016
      This first annual report provides an overall highlight of research results published from October 1, 2015 to October 1, 2016 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2015 – October 1, 2016) (PDF, 2.6MB)  
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
    • By NASA
      Rodent Research-28 fluorescein angiogram of the microvascular circulation of the mouse retina.Image courtesy: Oculogenex Inc. Key Takeaways
      A total of 361 publications were collected in FY-24. These publications include peer-reviewed scientific studies or other literature such as books and patents published recently or years prior. More than 80% of the publications collected in FY-24 were from research sponsored by NASA and JAXA. In FY-24, the predominant area of study for publications was Earth and Space science. The results obtained were primarily generated via Derived Results, studies that retrieve open data from online sources to make new discoveries. These Derived publications indicate a 39% return on investment. A total of 4,438 publications have been gathered since the beginning of station, and about 16% of this literature has been published in top-tier journals. The year-over-year growth of top-tier publications has been greater than the growth of regular publications. In 13 years, there was a  22% growth of top-tier publications and a 0.47% growth of regular publications. Almost 80% of top-tier results have been published in the past seven years. Station research continues to surpass national and global standards of citation impact. This year, a simplified hierarchy map showing the nested categories of station disciplines, subdisciplines, and selected keywords is presented to represent the more than 15,000 topic key words generated by the studies. Station research has seen a remarkable growth of international collaboration since its first days of assembly in 1999. Currently, about 40% of the research produced by station is the result of a collaboration between two or more countries. To date, the United States has participated in 23% of international collaborations. Of the nearly 4,000 investigations operated on station since Expedition 0, approximately 59% are identified as completed. From this subset of completed investigations, studies directly conducted on station rather than Derived Results have produced the most scientific results. This pattern differs from analyses conducted with all publication data. Introduction
      The International Space Station is a state-of-the art laboratory in low Earth orbit. Since the year 2000, distinguished researchers from a myriad of disciplines around the world have been sending equipment and investigations to station to learn how space-related variables affect the human body, plant and microbial life, physical processes, equipment function, and more. Sophisticated remote sensing techniques and telescopes attached to station also observe the Earth and the universe to enhance our understanding of weather patterns, biomass changes, and cosmic events.
      Investigations can be operated remotely from Earth with ground control support, directly on station with the help of crew members, or autonomously (without human assistance). The most recent science conducted on station has engaged private astronauts to advance the research endeavors of the commercial sector. The improvement of these science operations (i.e., how data is collected and returned) has led to more reliable scientific results. Additionally, extensive domestic and international collaboration bridging academic institutions, corporations, and funding agencies has produced high quality and impactful research that inspires new generations of students, researchers, and organizations looking to solve problems or innovate in emerging fields.
      The studies highlighted in this report are only a small, representative sample of the research conducted on station in the past 12 months. Many more groundbreaking findings were reported in fiscal year 2024 (FY- 24), including:
      Plant adaptation through the adjustment of regulatory proteins, which can lead to sustainable food production on the Moon and Mars (BRIC-LED-001). A connection between downregulated mitochondrial gene pathways and neurotransmitter signaling dysfunction that could assist the development of new pharmaceutical or nutritional therapies to prevent strength loss in neuromuscular disorders. (Microbial Observatory-1). The precise measurement of hydrogen isotopes to provide a better assessment of dark matter (AMS-02). The adaptation of a permanent flow cytometer in space that enables the examination of blood counts, hormones, enzymes, nucleic acids, proteins, and biomarkers to assess crew health in real time (rHEALTH). The behavior of oil-in-water drops in microgravity (i.e., oil drops grow over time, but drop displacement decreases). Understanding the behavior of oils, dyes, and detergents can lead to a safer environment and sustainability of emulsion technologies in the food, pharmaceutical, paint, and lubrication industries (FSL Soft Matter Dynamics-PASTA). Fundamental and applied research conducted on station improves the state of scientific understanding. Whether it is through the examination of microgravity and radiation effects, or through the testing of countermeasures, new materials, and computing algorithms; the hard work of integrating flight operations with scientific objectives is carried out to protect our planet, improve our health, and learn more about our place in the universe.
      The following pages aim to demonstrate how station is revolutionizing science through cooperation, curiosity, and ingenuity. Projects that may have begun as simple ideas are now shaping the way we think about and operate in space to advance our goal of going to the Moon and beyond.
      NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli poses in front of the Kibo laboratory module’s Advanced Plant Habitat housing tomato plants for an experiment investigating how the plant immune system adapts to spaceflight and how spaceflight affects plant production. NASA ID: iss070e073612.Credits: NASA Bibliometric Analyses: Measuring Space Station Impacts
      Literature associated with space station research results (e.g., scientific journal articles, books, patents) is collected, curated, and linked to investigations. The content from these publications is classified based on how the results are obtained. The current classifications are:
      Flight Preparation Results – publications about the development work performed for an investigation or facility prior to operation on space station. Station Results – publications that provide information about the performance and results of an investigation or facility as a direct implementation on station or on a vehicle to space station. Derived Results – publications that use open data from an investigation that operated on station. Access to raw data for new researchers expands global knowledge and scientific benefits. Related – publications that indirectly lead to the development of an investigation or facility. To date, over 2,200 publications have been identified as Related. This count of Related publications is not included in the analyses presented in this report.
      Projects taking place on station (facilities or investigations) are assigned to one of six science disciplines:
      Biology and Biotechnology: Includes plant, animal, cellular biology, habitats, macromolecular crystal growth, and microbiology. Earth and Space Science: Includes astrophysics, remote sensing, near-Earth space environment, astrobiology, and heliophysics. Educational and Cultural Activities: Includes student-developed investigations and competitions. Human Research: Includes crew healthcare systems, all human-body systems, nutrition, sleep, and exercise. Physical Science: Includes combustion, materials, fluid, and fundamental physics. Technology Development and Demonstration: Includes air, water, surface, and radiation monitoring, robotics, small satellites and control technologies, and spacecraft materials. Facilities consist of the infrastructure and equipment on station that enable the research to be conducted (e.g., workstation “racks” containing power, data and thermal control, furnaces, crystallization units, animal and plant habitats). Investigations are research projects with one or multiple science objectives. Investigations may use a facility to execute the experiments. A publicly accessible database of space station investigations, facilities, and publications can be found in the Space Station Research Explorer (SSRE) website. Through bibliometric analyses, the examination of publications and citations in different categories, we learn about research productivity, quality, collaboration, and impact. These measurements allow our organization to identify trends in research growth to better plan and support new scientific endeavors. The analyses included in this report serve to answer questions related to fiscal year data and total publication data to promote research accountability and integrity and ensure benefits to humanity.

      Station research produced in FY-2024
      Between Oct. 1, 2023, and Sept. 30, 2024, we identified a total of 361 publications associated with station research. Of these 361 publications, 52 were published in Biology and Biotechnology, 176 in Earth and Space, 5 in Educational and Cultural Activities, 40 in Human Research, 56 in Physical Science, and 32 in Technology Development and Demonstration. This publication count broken out by research discipline and space agency is shown in Figure 1A. Of the 361 publications, 41 were classified as Flight Preparation Results, 178 as Station Results, and 140 as Derived Results. Because Derived Results are new scientific studies generated from shared data, derived science is an additional return on the investment entrusted to station. In FY-24, this return on investment was 39%; a 12% increase from FY-23. Figure 1B shows this publication data broken out by research discipline and publication type.
      Figure 1A. A total of 361 publications were collected in FY-24. Over 80% of the publications reported results in Earth and Space, primarily from investigations associated with NASA and JAXA research. Figure 1B, A total of 361 publications were collected in FY-24. Most publications in Earth and Space came from Derived Results associated with NASA and JAXA research. These Derived Results demonstrate a return on investment of 39%, a 12% increase from FY-23. Overall growth, quality, impact, and diversity of station research
      Growth: A total of 4,438 publications have been collected since station began operations with 176 publications (4%) from work related to facilities on station. In Figure 2A, we show the growth of both regular and top-tier science over the years. Top-tier publications are studies published in scientific journals ranked in the top 100 according to ClarivateTM (Web of ScienceTM)1, a global database that compiles readership and citation standards to calculate a journal’s Eigenfactor Score2 and ranking. Regular publications include literature published in sources that may be specific to microgravity research but are not ranked.
      Our data shows that over a 13-year period from 2011 to 2023, regular publications grew 0.47% per year and top-tier publications grew 22% per year. Some of the subdisciplines that have experienced most growth from station research are astrophysics (707 publications), Earth remote sensing (266 publications), fluid physics (245 publications), and microbiology (214 publications).
      Quality: About 16% of station results have been published in top-tier journals. However, in Figure 2B we zoom in to examine the growth of top-tier publications given their station science discipline, showing that almost 80% of top-tier research has been published in the past seven years. Currently, a total of 696 articles have been published in top-tier journals and about 53% of this total are Derived Results from Earth and Space science investigations.
      Figure 2A. Growth of regular and top-tier research publications over time. About 16% of station results have been published in top-tier journals. Inset shows the growth of microgravity- and non-microgravity-specific sources used in regular publications. Figure 2B. Growth of top-tier research publications by station research discipline (n = 696). There has been a significant
      increase of top-tier articles published since 2018, with a little over 50% emerging from Derived Results in Earth and Space
      science. Table inset shows the top-tier journals with most station research published. Impact: Previous analyses have demonstrated that the citation impact of station research has superseded national and global standards since 2011 (See Annual Highlights of Results FY-2023). This pattern continues today.
      Diversity: Station science covers six major science disciplines, 73 subdisciplines, and thousands of topic keywords within each subdiscipline. A precise visualization of such abundant diversity would be overwhelming and impenetrable. However, plotting a few topic keywords within each sub-discipline succinctly shows the breadth of science station has to offer (Figure 3). For a better appreciation of station’s diversity, see the interactive hierarchy diagram online. Note that some topics, such as radiation, are studied from multiple perspectives (e.g., radiation measurement through physical science, radiation effects through human research, and shielding through technology development). Topic keywords were obtained using ClarivateTM (Web of ScienceTM).1
      Station research collaboration
      Previous analyses have shown the growth of collaboration between countries throughout the years based on co-authorship (See Annual Highlights of Results FY-2023). In a new analysis conducted with country data obtained through Dimensions.ai3 (n = 3,309 publications), we calculated that about 40% of the publications produced from station research are collaborations between several countries, and about 60% are intercollegiate collaborations within individual countries. As seen in the space agency networks in Figure 4, the United States participates in approximately 23% of the collaborations with other countries, making it the most collaborative country.
      Figure 4: Country collaboration in station research based on publication co-authorship. Networks include up to five countries collaborating in an investigation. Nodes and links from countries that published their research independently are not included. From research ideas to research findings
      Nearly 4,000 investigations have operated since Expedition 0; with a subset of 2,352 investigations (approximately 59%) marked as complete. These completed investigations have concluded their science objectives and reported findings. In Figure 5, we show the citation output from publications exclusively tied to completed investigations. In this Sankey diagram, Times Cited corresponds to the count of publications with at least one citation in each publication type (Station Results, Flight Preparation Results, and Derived Results). This citation count adequately parallels the total number of citations per publication and allows the visualization of a comprehensible chart. This analysis demonstrates that most completed investigations have reported results directly from studies conducted on station, followed by studies conducted in preparation to go to space, and finally by studies derived from open science available online. Likewise, results obtained straight from station receive more citations (e.g, over 46,000) than Flight Preparation (3,636 citations) or Derived results (936 citations). This pattern differs from analyses including all publication data in Figures 1 and 2.
      Linking Space Station Benefits
      Space station research results lead to benefits for human exploration of space, benefits to humanity, and the advancement of scientific discovery. This year’s Annual Highlights of Results from the International Space Station includes descriptions of just a few of the results that were published from across the space station partnership during the past year.
      EXPLORATION: Space station investigation results have yielded updated insights into how to live and work more effectively in space by addressing such topics as understanding radiation effects on crew health, combating bone and muscle loss, improving designs of systems that handle fluids in microgravity, and determining how to maintain environmental control efficiently. DISCOVERY: Results from the space station provide new contributions to the body of scientific knowledge in the physical sciences, life sciences, and Earth and space sciences to advance scientific discoveries in multi-disciplinary ways. BENEFITS FOR HUMANITY: Space station science results have Earth-based applications, including understanding our climate, contributing to the treatment of disease, improving existing materials, and inspiring the future generation of scientists, clinicians, technologists, engineers, mathematicians, artists, and explorers. References
      1Journal ranking and Figure 5 data were derived from ClarivateTM (Web of ScienceTM). © Clarivate 2024. All rights reserved.
      2West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor MetricsTM: A Network approach to assessing scholarly journals. College and Research Libraries. 2010;71(3). DOI: 10.5860/0710236.
      3Digital Science. (2018-) Dimensions [Software] available from https://app.dimensions.ai. Accessed on October 10, 2024, under license agreement.

      View the full article
    • By NASA
      The 2024 Annual Highlights of Results from the International Space Station is now available. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.
      Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth. Credits: University of Nebraska-Lincoln Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.
      The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.
      Some of the findings presented in this edition include:
      Improved machine learning algorithms to detect space debris (Italian Space Agency, Roscosmos, ESA) Visuospatial processing before and after spaceflight (CSA) Metabolic changes during fasting intervals in astronauts (ESA) Vapor bubble production for the improvement of thermal systems (NASA) Immobilization of particles for the development of optical materials (JAXA) Maintained function of cardiac 3D stem cells after weeks of exposure to space (NASA) The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.
      [See the list of Station Research Results publications here and find the current edition of the Annual Highlights of Results here.]  
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
  • Check out these Videos

×
×
  • Create New...