Jump to content

A look inside people’s brains who say they’ve had a UFO encounter


USH

Recommended Posts

Stanford Professor Garry Nolanhas been testing the brains of people who say they’ve experienced a UFO encounter as well as he analysis anomalous materials from UFO crashes. 

AVvXsEifBxTlDCLuZkjuF7WEPQu1JK3Hz22YS6CApEpxpefZmlU2x0K2KkIJnoenhtJ_KFvMMwrKq0q-HKOylTWXc9Vs3ofNFSGpUXgKRYPRuChOMm_GFPAdkrnWb_eoBWKcVH_9c_c5uou0a3fuAnAUjWinSCKMMZQ4B8lex9Zp_INg558Te7TV6Vr1u3FjPA=w640-h360

Did the people who claimed that they'd had an encounter, especially the pilots, describe any perceivable decrease in neurological capacity? 

Of the 100 or so patients that we looked at, about a quarter of them died from their injuries. The majority of these patients had symptomology that's basically identical to what's now called Havana syndrome. 

But Dr. Nolan has also spent the past decade analyzing anomalous materials From UFO crashes 

One of the materials from the so called Ubatuba event, a UFO event in Brazil, has extraordinarily altered isotope ratios of magnesium. 

What that means is that if you find a metal where the isotope ratios are changed far beyond what is normally found in nature, then that material has likely been engineered, the material is downstream of a process that caused them to be altered. Someone did it. The questions are who… and why? 

Speaking to Vice’s Motherboard, Nolan opened up about his work and revealed what sparked his interest in UAP. Learn more at: Vice Motherboard

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Use your mouse to explore this 360-degree view of Gediz Vallis channel, a region of Mars that NASA’s Curiosity rover surveyed before heading west to new adventures. NASA/JPL-Caltech/MSSS The rover captured a 360-degree panorama before leaving Gediz Vallis channel, a feature it’s been exploring for the past year.
      NASA’s Curiosity rover is preparing for the next leg of its journey, a monthslong trek to a formation called the boxwork, a set of weblike patterns on Mars’ surface that stretches for miles. It will soon leave behind Gediz Vallis channel, an area wrapped in mystery. How the channel formed so late during a transition to a drier climate is one big question for the science team. Another mystery is the field of white sulfur stones the rover discovered over the summer.
      Curiosity imaged the stones, along with features from inside the channel, in a 360-degree panorama before driving up to the western edge of the channel at the end of September.
      The rover is searching for evidence that ancient Mars had the right ingredients to support microbial life, if any formed billions of years ago, when the Red Planet held lakes and rivers. Located in the foothills of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, Gediz Vallis channel may help tell a related story: what the area was like as water was disappearing on Mars. Although older layers on the mountain had already formed in a dry climate, the channel suggests that water occasionally coursed through the area as the climate was changing.
      Scientists are still piecing together the processes that formed various features within the channel, including the debris mound nicknamed “Pinnacle Ridge,” visible in the new 360-degree panorama. It appears that rivers, wet debris flows, and dry avalanches all left their mark. The science team is now constructing a timeline of events from Curiosity’s observations.
      NASA’s Curiosity captured this panorama using its Mastcam while heading west away from Gediz Vallis channel on Nov. 2, 2024, the 4,352nd Martian day, or sol, of the mission. The Mars rover’s tracks across the rocky terrain are visible at right.NASA/JPL-Caltech/MSSS The science team is also trying to answer some big questions about the sprawling field of sulfur stones. Images of the area from NASA’s Mars Reconnaissance Orbiter (MRO) showed what looked like an unremarkable patch of light-colored terrain. It turns out that the sulfur stones were too small for MRO’s High-Resolution Imaging Science Experiment (HiRISE) to see, and Curiosity’s team was intrigued to find them when the rover reached the patch. They were even more surprised after Curiosity rolled over one of the stones, crushing it to reveal yellow crystals inside.
      Science instruments on the rover confirmed the stone was pure sulfur — something no mission has seen before on Mars. The team doesn’t have a ready explanation for why the sulfur formed there; on Earth, it’s associated with volcanoes and hot springs, and no evidence exists on Mount Sharp pointing to either of those causes.
      “We looked at the sulfur field from every angle — from the top and the side — and looked for anything mixed with the sulfur that might give us clues as to how it formed. We’ve gathered a ton of data, and now we have a fun puzzle to solve,” said Curiosity’s project scientist Ashwin Vasavada at NASA’s Jet Propulsion Laboratory in Southern California.
      NASA’s Curiosity Mars rover captured this last look at a field of bright white sulfur stones on Oct. 11, before leaving Gediz Vallis channel. The field was where the rover made the first discovery of pure sulfur on Mars. Scientists are still unsure exactly why theses rocks formed here. Spiderwebs on Mars
      Curiosity, which has traveled about 20 miles (33 kilometers) since landing in 2012, is now driving along the western edge of Gediz Vallis channel, gathering a few more panoramas to document the region before making tracks to the boxwork.
      Viewed by MRO, the boxwork looks like spiderwebs stretching across the surface. It’s believed to have formed when minerals carried by Mount Sharp’s last pulses of water settled into fractures in surface rock and then hardened. As portions of the rock eroded away, what remained were the minerals that had cemented themselves in the fractures, leaving the weblike boxwork.
      On Earth, boxwork formations have been seen on cliffsides and in caves. But Mount Sharp’s boxwork structures stand apart from those both because they formed as water was disappearing from Mars and because they’re so extensive, spanning an area of 6 to 12 miles (10 to 20 kilometers).  
      Scientists think that ancient groundwater formed this weblike pattern of ridges, called boxwork, that were captured by NASA’s Mars Reconnaissance Orbiter on Dec. 10, 2006. The agency’s Curiosity rover will study ridges similar to these up close in 2025.NASA/JPL-Caltech/University of Arizona This weblike crystalline structure called boxwork is found in the ceiling of the Elk’s Room, part of Wind Cave National Park in South Dakota. NASA’s Curiosity rover is preparing for a journey to a boxwork formation that stretches for miles on Mars’ surface. “These ridges will include minerals that crystallized underground, where it would have been warmer, with salty liquid water flowing through,” said Kirsten Siebach of Rice University in Houston, a Curiosity scientist studying the region. “Early Earth microbes could have survived in a similar environment. That makes this an exciting place to explore.”
      More About Curiosity
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems (formerly Ball Aerospace & Technologies Corp.), in Boulder, Colorado. JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate in Washington.
      For more about these missions:
      science.nasa.gov/mission/msl-curiosity
      science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-160
      Share
      Details
      Last Updated Nov 18, 2024 Related Terms
      Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Explore More
      4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 4 days ago 5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
      Article 4 days ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Takes a Look at Tangled… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Takes a Look at Tangled Galaxies
      This Hubble image features a pair of interacting spiral galaxies called MCG+05-31-045. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
      Download this image

      This NASA/ESA Hubble Space Telescope image depicts the cosmic tangle that is MCG+05-31-045, a pair of interacting galaxies located 390 million light-years away and a part of the Coma galaxy cluster.
      The Coma Cluster is a particularly rich cluster that contains over a thousand known galaxies. Amateur astronomers can easily spot several of these in a backyard telescope (See Caldwell 35). Most of them are elliptical galaxies, and that’s typical of a dense galaxy cluster like the Coma Cluster: many elliptical galaxies form through close encounters between galaxies that stir them up, or even collisions that rip them apart. While the stars in interacting galaxies can stay together, their gas is twisted and compressed by gravitational forces and rapidly used up to form new stars. When the hot, massive, blue stars die, there is little gas left to form new generations of young stars to replace them. As spiral galaxies interact, gravity disrupts the regular orbits that produce their striking spiral arms. Whether through mergers or simple near misses, the result is a galaxy almost devoid of gas, with aging stars orbiting in uncoordinated circles: an elliptical galaxy.
      It’s very likely that a similar fate will befall MCG+05-31-045. As the smaller spiral galaxy is torn up and integrated into the larger galaxy, many new stars will form, and the hot, blue ones will quickly burn out, leaving cooler, redder stars behind in an elliptical galaxy, much like others in the Coma Cluster. But this process won’t be complete for many millions of years.
      Explore more Coma Cluster images from Hubble.
      Hubble Uncovers Thousands of Globular Star Clusters Scattered Among Galaxies Hubble’s Galaxies With Knots, Bursts Hubble Sees Near and Far Hubble Sees Plunging Galaxy Losing Its Gas Hubble Catches Galaxies Swarmed by Star Clusters Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Nov 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Hubble Space Telescope Spiral Galaxies Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Hubble’s Galaxies



      Explore the Night Sky


      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, New… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 min read
      NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus
      NASA’s Hubble Space Telescope (left) and NASA’s New Horizon’s spacecraft (right) images the planet Uranus. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI)
      Download this image

      NASA’s Hubble Space Telescope and New Horizons spacecraft simultaneously set their sights on Uranus recently, allowing scientists to make a direct comparison of the planet from two very different viewpoints. The results inform future plans to study like types of planets around other stars.
      Astronomers used Uranus as a proxy for similar planets beyond our solar system, known as exoplanets, comparing high-resolution images from Hubble to the more-distant view from New Horizons. This combined perspective will help scientists learn more about what to expect while imaging planets around other stars with future telescopes.
      “While we expected Uranus to appear differently in each filter of the observations, we found that Uranus was actually dimmer than predicted in the New Horizons data taken from a different viewpoint,” said lead author Samantha Hasler of the Massachusetts Institute of Technology in Cambridge and New Horizons science team collaborator.
      In this image, two three-dimensional shapes (top) of Uranus are compared to the actual views of the planet from NASA’s Hubble Space Telescope (bottom left) and NASA’s New Horizon’s spacecraft (bottom right). Comparing high-resolution images from Hubble to the smaller view from New Horizons offers a combined perspective that will help researchers learn more about what to expect while imaging planets around other stars with future observatories. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI)
      Download this image

      Direct imaging of exoplanets is a key technique for learning about their potential habitability, and offers new clues to the origin and formation of our own solar system. Astronomers use both direct imaging and spectroscopy to collect light from the observed planet and compare its brightness at different wavelengths. However, imaging exoplanets is a notoriously difficult process because they’re so far away. Their images are mere pinpoints and so are not as detailed as the close-up views that we have of worlds orbiting our Sun. Researchers can also only directly image exoplanets at “partial phases,” when only a portion of the planet is illuminated by their star as seen from Earth.
      Uranus was an ideal target as a test for understanding future distant observations of exoplanets by other telescopes for a few reasons. First, many known exoplanets are also gas giants similar in nature. Also, at the time of the observations, New Horizons was on the far side of Uranus, 6.5 billion miles away, allowing its twilight crescent to be studied—something that cannot be done from Earth. At that distance, the New Horizons view of the planet was just several pixels in its color camera, called the Multispectral Visible Imaging Camera.
      On the other hand, Hubble, with its high resolution, and in its low-Earth orbit 1.7 billion miles away from Uranus, was able to see atmospheric features such as clouds and storms on the day side of the gaseous world.
      “Uranus appears as just a small dot on the New Horizons observations, similar to the dots seen of directly-imaged exoplanets from observatories like Webb or ground-based observatories,” added Hasler. “Hubble provides context for what the atmosphere is doing when it was observed with New Horizons.”
      The gas giant planets in our solar system have dynamic and variable atmospheres with changing cloud cover. How common is this among exoplanets? By knowing the details of what the clouds on Uranus looked like from Hubble, researchers are able to verify what is interpreted from the New Horizons data. In the case of Uranus, both Hubble and New Horizons saw that the brightness did not vary as the planet rotated, which indicates that the cloud features were not changing with the planet’s rotation.
      However, the importance of the detection by New Horizons has to do with how the planet reflects light at a different phase than what Hubble, or other observatories on or near Earth, can see. New Horizons showed that exoplanets may be dimmer than predicted at partial and high phase angles, and that the atmosphere reflects light differently at partial phase.
      NASA has two major upcoming observatories in the works to advance studies of exoplanet atmospheres and potential habitability.
      “These landmark New Horizons studies of Uranus from a vantage point unobservable by any other means add to the mission’s treasure trove of new scientific knowledge, and have, like many other datasets obtained in the mission, yielded surprising new insights into the worlds of our solar system,” added New Horizons principal investigator Alan Stern of the Southwest Research Institute.
      This illustration shows NASA’s New Horizons spacecraft’s view of our solar system from deep in the Kuiper Belt. New Horizons is currently at an estimated distance of more than 5 billion miles from Earth. The probe was 6.5 billion miles away from Uranus when it recently observed the planet. In this study, researchers used the gas giant as an exoplanet proxy, comparing high-resolution images from NASA’s Hubble Space Telescope to the smaller view from New Horizons to learn more about what to expect while imaging planets around other stars. NASA, ESA, Christian Nieves (STScI), Ralf Crawford (STScI), Greg Bacon (STScI)
      Download this image

      NASA’s upcoming Nancy Grace Roman Space Telescope, set to launch by 2027, will use a coronagraph to block out a star’s light to directly see gas giant exoplanets. NASA’s Habitable Worlds Observatory, in an early planning phase, will be the first telescope designed specifically to search for atmospheric biosignatures on Earth-sized, rocky planets orbiting other stars.
      “Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing for these future missions,” concluded Hasler. “And that will be critical to our success.”
      Launched in January 2006, New Horizons made the historic flyby of Pluto and its moons in July 2015, before giving humankind its first close-up look at one of these planetary building block and Kuiper Belt object, Arrokoth, in January 2019. New Horizons is now in its second extended mission, studying distant Kuiper Belt objects, characterizing the outer heliosphere of the Sun, and making important astrophysical observations from its unmatched vantage point in distant regions of the solar system.
      The Uranus results are being presented this week at the 56th annual meeting of the American Astronomical Society Division for Planetary Sciences, in Boise, Idaho.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      The Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. Southwest Research Institute, based in San Antonio and Boulder, Colorado, directs the mission via Principal Investigator Alan Stern and leads the science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Hannah Braun, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contacts:
      Samantha Hasler
      Massachusetts Institute of Technology, Cambridge, MA
      Share








      Details
      Last Updated Oct 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Division Goddard Space Flight Center Hubble Space Telescope New Horizons Planetary Science Planetary Science Division Planets The Solar System Uranus Keep Exploring Explore More
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      New Horizons


      New Horizons was the first spacecraft to explore Pluto and its five moons up close and, later, made the first…


      Studying the Outer Planets and Moons



      Hubble Online Activities


      View the full article
    • By Amazing Space
      The Asteroid That Destroyed Dinosaurs Had a DEADLY Companion!
    • By NASA
      NASA’s HERA (Human Exploration Research Analog) crew members enjoy their first glimpse of the outside after a 45-day stay inside the analog environment. From left to right: Sergii Iakymov, Sarah Elizabeth McCandless, Erin Anderson, and Brandon Kent.NASA/Bill Stafford An all-volunteer crew on a simulated trip to Mars “returned” to Earth on Sept. 23, 2024, after being isolated in a tiny habitat at Johnson Space Center in Houston. Their work is contributing to the science that will propel humanity to the Moon and eventually Mars.
      The HERA missions provide valuable scientific insights into how humans may respond to the confinement, demanding work-life conditions, and remote environments that astronauts may encounter on deep space missions. These insights help NASA prepare for humanity’s next giant leap to the Moon and Mars.

      Campaign 7 Mission 3 started when HERA operations lead Ted Babic rang the bell outside the habitat 10 times, a ceremonial send-off wishing the crew a safe and successful simulated mission to Mars. Seven rings honored the campaign, and three more signaled the mission—continuing a long-standing tradition.   

      At ingress, Anderson, a structural engineer at NASA’s Langley Research Center in Virginia, told HERA’s mission control, “We’re going to take good care of this ship of yours on our journey.”  
      The HERA crew members wave goodbye to friends, family, and support staff before entering the analog environment on Aug. 9, 2024.NASA/James Blair Life on a 45-Day Journey  

      The HERA crew members participated in 18 human health and performance studies, seven of which were led by scientists from outside the United States. These international studies are in collaboration with the United Arab Emirates’ Mohammed Bin Rashid Space Centre and the European Space Agency.  
      HERA crew members inside the analog environment at NASA’s Johnson Space Center in Houston. From left: Sarah Elizabeth McCandless, Brandon Kent, Erin Anderson, and Sergii Iakymov.NASA/Bill Stafford Throughout the simulation, the crew performed a variety of tasks. They harvested plants from a hydroponic garden, grew shrimp, deployed a small cube satellite to simulate data gathering, conducted a virtual reality “walk” on the surface of Mars, and flew simulated drones on the Martian terrain. These activities are designed to immerse the crew in the task-focused mindset of astronauts. NASA scientists then monitor HERA crew to assess how routine tasks, along with isolation and confinement, impact behavior and performance. 

      As their mission progressed, the team experienced longer communication delays with mission control, eventually reaching five-minute lags. This simulates the challenges astronauts might face on Mars, where delays could be up to 20 minutes. Scientists studying HERA crew are interested to see how this particular group builds independent, autonomous workflows, despite this communication delay.  

      Here are some snapshots of crew activities:  
      McCandless holds a skeletal framework of a Mars rover. She is wearing augmented reality glasses that allow her to project various scientific hardware as holograms. The final product will be a Mars rover that she ‘built’ herself. NASA Kent and Anderson, seen through an airlock window separating rooms inside HERA, conduct a virtual reality EVA on the Mars surface. NASA McCandless analyzes geological samples inside HERA’s glove box. Throughout the HERA mission, samples are “collected” on Mars during mock extravehicular activities. NASA/James Blair Anderson holds her coffee cup as she climbs the ladder connecting the first and second floors inside HERA.NASA Kent examines a petri dish for storing swabs of microbes. He and fellow crew members swab surfaces around HERA, then wait a few days to examine any microbes that grow in the dishes. Iakymov examines water quality and temperature in a tank that holds a few triops shrimp that he and his crewmates raised.NASA McCandless and Anderson work out on HERA’s second floor. They are holding power blocks, dumbbells equipped with weights that can adjust to a maximum of 35 pounds. The blocks take up less space than a set of regular dumbbells, helping to save space in the tiny habitat.NASA All crew members brought books to accompany them on their journey to the Red Planet, while Kent left behind letters for his two daughters to open each day.   

      McCandless also brought letters from loved ones, along with Legos, her favorite card game, and a vintage iPod.  
      Iakymov, an aerospace engineer with more than 15 years of experience in research and design, is carrying postcards and photos of family and friends.   

      Anderson, who describes herself as a massive space nerd, brought extra socks and “The Never Ending Story,” a book she has cherished throughout her life.   

      The crew all shared appreciation for being part of a mission that contributes to the aspirations of future human space exploration travel.   
      The crew holds up varieties of lettuce grown in hydroponic units inside HERA. NASA Returning to Earth  

      As the mission neared its end, McCandless and Anderson participated in a Groundlink—a live session connecting them with middle school students in a classroom in Coconut Grove, Florida, and in Olathe, Kansas. Groundlinks provide a unique opportunity for students to engage directly with crew members and learn about the realities of long-duration missions. 

      The students asked the crew about life inside the habitat, the challenges of isolation, and what it might be like to live on Mars. They were also curious about the crew’s favorite foods and activities. McCandless shared her love for cheddar crisps and freeze-dried Pad Thai and proudly showed off favorite sports teams from her home state of Kansas, much to the cheers of the crowd. Anderson displayed the massive collection of comics and fantasy books that she read inside the habitat.  

      In the late afternoon of Sept. 23, 2024, the crew egressed from HERA, marking the end of their 45-day simulated mission to Mars. After stepping out of the habitat, the crew expressed gratitude for the opportunity and reflected on the mission’s significance. 

      “Following our safe passage to Mars, and our safe return to Earth, as the crew of Campaign 7, Mission 3, we hereby officially transfer this exploration vessel to the flight analogs operations team,” said Kent. “We hope this vessel continues to serve as a safe home for future HERA crews.” 

      Want to Participate in HERA?  

      NASA is actively seeking healthy, non-smoking volunteers, aged 30 to 55, for future HERA missions. Volunteers, who will be compensated for their participation, must pass a physical and psychological assessment to qualify.  

      For those inspired to take part in this groundbreaking research, opportunities to join future HERA missions await:
      https://analogstudies.jsc.nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...