Jump to content

Weird alien-like fish spotted in the ocean’s twilight zone off the coast of California


USH

Recommended Posts

I spy with my barreleye, a new Fresh from the Deep! During a dive with our education and outreach partner, the Monterey Bay Aquarium, the team came across a rare treat: a barreleye fish (Macropinna microstoma). 

AVvXsEiIHpwbvvjPHN_ZSPgjohWJNSgAvUxODvI0Y_J9-XUDbWfbn-WXdtK9QO7k9VTBlBgZGwI3r83T-b_a2QkQtpcnm3TXBbkqod-wmmD3FYV1UQ1Q_4tUnC1qLKNqy5VKm9RyYBiDEa_wwWTFq5teZiQYSI100_Au0128Tqkq5BorZPBAathkt2h_xiLXTA=w640-h360

MBARI’s remotely operated vehicles Ventana and Doc Ricketts have logged more than 5,600 successful dives and recorded more than 27,600 hours of video—yet we’ve only encountered this fish nine times! 

The barreleye lives in the ocean’s twilight zone, at depths of 600 to 800 meters (2,000 to 2,600 feet). Its eyes look upwards to spot its favorite prey—usually small crustaceans trapped in the tentacles of siphonophores—from the shadows they cast in the faint shimmer of sunlight from above. 

AVvXsEhsbHRdTeS57KsfMEVHsqY1kD1u7Lq_o7eXdPcWEdWI3F3NwPuRAD6AzU-XodJNEYlgZp9P9BU7EXewSYg6cB4n-yRATomiw5XykjgmuW2SmRC19jNX3wmyZ6HZXUggTdMAjWbIV0uLaNLGAkXl-rR1Slwrf-rskVSM9sfI8ADivSRUXYHTn1qP8kx1Qg=w640-h360

But how does this fish eat when its eyes point upward and its mouth points forward? 

MBARI researchers learned the barreleye can rotate its glowing green eyes beneath that dome (head) of transparent tissue. 

AVvXsEgEWfVEInRdB1xCLcocQVDyvoK1S222xhk6gQUoieXymQ2nOM4kfR3CqpKxGnhkPJht38A_qnGZSeQOnVLiq0FSRDj4bMzVynywCYaezHjz4JPR73DbGKIqyXu-F0FBXcKv2YKVP0LNki3qlK6F85fWRJfdvh_Q4rrrxDQ5F7Vi90ER3p_MBQU9o5r0RA=w640-h360

Aquarist Tommy Knowles and his team were aboard MBARI’s R/V Rachel Carson with our ROV Ventana to collect jellies and comb jellies for the Aquarium’s upcoming Into the Deep exhibition when they spotted this fascinating fish. The team stopped to marvel at Macropinna before it swam away.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Technicians carefully install a piece of equipment to house Gateway’s xenon fuel tanks, part of its advanced electric propulsion system. Gateway’s Power and Propulsion Element, which will make the lunar space station the most powerful solar electric spacecraft ever flown, recently received the xenon and liquid fuel tanks for its journey to and around the Moon.
      Technicians in Palo Alto, California carefully install a piece of equipment that will house the tanks. Once fully assembled and launched to lunar orbit, the Power and Propulsion Element’s roll-out solar arrays – together about the size of an American football field endzone – will harness the Sun’s energy to energize xenon gas and produce the thrust to get Gateway to the Moon’s orbit where it will await the arrival of its first crew on the Artemis IV mission.
      The Power and Propulsion Element will also carry the European Radiation Sensors Array science experiment provided by ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency), one of three Gateway science experiments that will study solar and cosmic radiation. The little understood phenomenon is a chief concern for humans and hardware journeying to deep-space destinations like Mars and beyond.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland, Ohio and built by Maxar Space Systems of Palo Alto, California.
      Hardware for the Gateway space station’s Power and Propulsion element, including its primary structure and fuel tanks ready for assembly, are shown at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway space station’s Power and Propulsion Element.NASA/Alberto Bertolin A type of advanced electric propulsion system thruster that will be used on Gateway glows blue as it emits ionized xenon gas during testing at NASA’s Glenn Research Center.NASA An artist’s rendering of European Radiation Sensor Array science experiment that will study both radiation and lunar dust.  NASA Learn More About Gateway Share
      Details
      Last Updated Nov 20, 2024 ContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
      Gateway Space Station Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Glenn Research Center Johnson Space Center Explore More
      3 min read Gateway: Centering Science
      Gateway is set to advance science in deep space, bringing groundbreaking research opportunities to lunar…
      Article 3 weeks ago 1 min read Gateway Stands Tall for Stress Test
      The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
      Article 2 months ago 3 min read Gateway: Up Close in Stunning Detail
      Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
      Article 5 months ago Keep Exploring Discover More Topics From NASA
      Space Launch System (SLS)
      Orion Spacecraft
      Gateway
      Human Landing System
      View the full article
    • By USH
      Over the years, numerous mysterious events have been witnessed in the sky, defying explanation. Recently, yet another unusual sky phenomenon was observed over Southern Australia capturing attention and sparking curiosity. 

      Video footage reveals what appears to be a dome-shaped structure, with an even stranger detail: lightning seems to bounce off or perhaps even originate from within the dome. 
      The mysterious formation has led to numerous theories. Some viewers suggest it could be a unique (red) rainbow or a rare weather event like a haboob (sandstorm). Others speculate it might be the result of weather manipulation or even an energy field projected over the region. 

      Opinions also vary on the lightning, some say it’s bouncing off the dome, while others believe it could be emanating from within. Although it may just be an unusual natural phenomenon, the seemly strange interaction with the lightning remains unexplained.
        View the full article
    • By European Space Agency
      Image: ESA Astronaut Reserve training kicks off at EAC View the full article
    • By NASA
      NASA’s SpaceX Crew-8 members, from left to right, Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps, are seen inside the Dragon spacecraft shortly after having landed off the coast of Pensacola, Florida, on Oct. 25, 2024. Credit: NASA/Joel Kowsky NASA’s SpaceX Crew-8 mission successfully splashed down at 3:29 a.m. EDT Friday, off Pensacola, Florida, concluding a nearly eight-month science mission and the agency’s eighth commercial crew rotation mission to the International Space Station.  
      After launching March 3 on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, spent 232 days aboard the space station.
      Recovery teams from NASA and SpaceX quickly secured the spacecraft and assisted the astronauts during exit. The crew now will head to NASA’s Johnson Space Center in Houston, while the Dragon spacecraft will return to SpaceX facilities at Cape Canaveral Space Force Station in Florida for inspection and refurbishment for future missions.
      During their mission, crew members traveled nearly 100 million miles and completed 3,760 orbits around Earth. They conducted new scientific research to advance human exploration beyond low Earth orbit and benefit human life on Earth. Research and technology demonstrations included conducting stem cell research to develop organoid models for studying degenerative diseases, exploring how fuel temperature affects material flammability, and studying how spaceflight affects immune function in astronauts. Their work aims to improve astronaut health during long-duration spaceflights, contributing to critical advancements in space medicine and benefitting humanity.

      Crew-8’s return follows the arrival of NASA’s SpaceX Crew-9 to the orbiting laboratory Sept. 29. These missions are part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111 
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov  
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Oct 25, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      9 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Oceans group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 13, 2024. NASA Ames/Milan Loiacono Faculty Advisor: Dr. Henry Houskeeper, Woods Hole Oceanographic Institute
      Graduate Mentor: Lori Berberian, University of California, Los Angeles

      Lori Berberian, Graduate Mentor
      Lori Berberian graduate student mentor for the 2024 SARP West Oceans group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Emory Gaddis
      Leveraging High Resolution PlanetScope Imagery to Quantify oil slick Spatiotemporal Variability in the Santa Barbara Channel
      Emory Gaddis, Colgate University
      Located within the Santa Barbara Channel of California, Coal Oil Point is one of the world’s largest hydrocarbon seep fields. The area’s natural hydrocarbon seepage and oil production have sustained both scientific interest and commercial activity for decades. Historically, indigenous peoples in the region utilized the naturally occurring tar for waterproofing baskets, establishing early evidence of the natural presence of hydrocarbons long before modern oil extraction began. Gaseous hydrocarbons are released from the marine floor through the process of seeping, wherein a buildup of reservoir pressure relative to hydrostatic pressure causes bubbles, oily bubbles, and droplets to rise to the surface. This hydrocarbon seepage is a significant source of Methane CH4—a major greenhouse gas––emissions into the atmosphere. Current limitations of optical remote sensing of oil presence and absence in the ocean leverage geometrical as well as biogeochemical factors and include changes in observed sun glint, sea surface damping, and wind roughening due to changes in surface oil concentrations. We leverage high-resolution (3m) surface reflectance observations obtained from PlanetScope to construct a time series of oil slick surface area spanning 2017 to 2023 within the Coal Oil Point seep field. Our initial methods are based on manual annotations performed within ArcGIS-Pro. We assess potential relationships between wind speed and oil slick surface area to support a sensitivity analysis of our time series. Correcting for confounding outside factors (e.g., wind speed) that modify oil slick surface area improves determination of oil slick surface area and helps test for changes in natural seepage rates and whether anthropogenic activities, such as oil drilling, alter natural oil seepage. Future investigations into oil slick chemical properties and assessing how natural seepage impacts marine and atmospheric environments (e.g., surface oil releases methane into the atmosphere) can help to inform the science of optimizing oil extraction locations.
      Rachel Emery
      Investigating Airborne LiDAR Retrievals of an Emergent South African Macroalgae
      Rachel Emery, The University of Oklahoma
      Right now, the world is facing an unprecedented biodiversity crisis, with areas of high biodiversity at the greatest risk of species extinction. One of these biodiversity hotspots, the Western Cape Province of South Africa, features one of the world’s largest unique marine ecosystems due to the extensive growth of canopy forming kelps, such as Macrocystis and Ecklonia, which provide three-dimensional structure important for fostering biodiversity and productivity. Canopy-forming kelps face increasing threats by marine heatwaves and pollution related to climate change and local water quality perturbation. Though these ecosystems can be monitored using traditional field surveying methods, remote sensing via airborne and satellite observations support improved spatial coverage and resample rates, plus extensive historical continuity for tracking multidecadal scale changes. Passive remote sensing observations—such as those derived using observations from NASA’s Airborne Visible-Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) —provide high resolution, hyperspectral imagery of oceanic environments anticipated to help characterize community dynamics and quantify macroalga physiological change. Active remote sensing observations, e.g., Light Detection and Ranging (LiDAR), are less understood in terms of applications to marine ecosystems, but are anticipated to support novel observations of vertical structure not supported using passive aquatic remote sensing. Here we investigate the potential to observe an emergent canopy-forming macroalgae (i.e., Ecklonia, which can extend more than a decimeter above the ocean’s surface) using NASA’s Land, Vegetation, and Ice sensor (LVIS), which confers decimeter-scale vertical resolution. We validate LVIS observations using matchup observations from AVIRIS-NG imagery to test whether LiDAR remote sensing can improve monitoring of emergent kelps in key biodiversity regions such as the Western Cape.
      Brayden Lipscomb
      Vertical structure of the aquatic light field based on half a century of oceanographic records from the southern California Current
      Brayden Lipscomb, West Virginia University
      Understanding the optical properties of marine ecosystems is crucial for improving models related to oceanic productivity. Models relating satellite observations to oceanic productivity or subsurface (e.g., benthic) light availability often suffer from uncertainties in parameterizing vertical structure and deriving columnar parameters from surface observations. The most accurate models use in situ station data, minimizing assumptions such as atmospheric optical thickness or water column structure. For example, improved accuracy of satellite primary productivity models has previously been demonstrated by incorporating information on vertical structure obtained from gliders and floats. We analyze vertical profiles in photosynthetically available radiation (PAR) obtained during routine surveys of the southern California Current system by the California Cooperative Oceanic Fisheries Investigation (CalCOFI). We find that depths of 1% and 10% light availability show coherent log-linear relationships with attenuation measured near surface (i.e., within the first 10 m), despite vertical variability in water column constituent concentrations and instrumentation challenges related to sensitivity, self-shading, and ship adjacency. Our results suggest that subsurface optical properties can be more reliably parameterized from near-surface measurements than previously understood.
      Dominic Bentley
      Comparing SWOT and PACE Satellite Observations to Assess Modification of Phytoplankton Biomass and Assemblage by North Atlantic Ocean Eddies
      Dominic Bentley, Pennsylvania State University
      Upwelling is the shoaling of the nutricline, thermocline, and isopycnals due to advection by eddies of the surface ocean layer. This shoaling effect leads to an increase in the productivity of algal blooms in a given body of water. Mesoscale to deformation scale eddy circulation modulates productivity based on latitude, season, direction, and other physical factors. However, many processes governing the effects of eddies on the ocean microbial environment remain unknown due to limitations in observations linking eddy strength and direction with productivity and ocean biogeochemistry. Currently, satellites are the only ocean observing system that allows for broad spatial coverage with high resample rates, albeit with limitations due to cloud obstructions (including storms that may stimulate productivity) and to observations being limited to the near-surface. A persisting knowledge gap in oceanography stems from limitations in the spatial resolution of observations resolving submesoscale dynamics. The recent launch of the Surface Water and Ocean Topography (SWOT) mission in December of 2022 supports observations of upper-ocean circulation with increased resolution relative to legacy missions (e.g. TOPEX/Poseidon, Jason-1, OSTM/Jason-2). Meanwhile, the launch of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite in February of 2024 is anticipated to improve knowledge of ocean microbial ecosystem dynamics. We match up SWOT observations of sea surface height (SSH) anomalies—informative parameters of eddy vorticity—with PACE observations of surface phytoplankton biomass and community composition to relate the distribution of phytoplankton biomass and assemblage structure to oceanic eddies in the North Atlantic. We observe higher concentrations of Chlorophyll a (Chla) within SSH minima indicating the stimulation of phytoplankton productivity by cyclonic features associated with upwelling-driven nutrient inputs.
      Abigail Heiser
      Assessing EMIT observations of harmful algae in the Salton Sea
      Abigail Heiser, University of Wisconsin- Madison
      In 1905, flooding from the Colorado River gave rise to what would become California’s largest lake, the Salton Sea. Today, the majority of its inflow is sourced from agricultural runoff, which is rich in fertilizers and pollutants, leading to elevated lake nutrient levels that fuel harmful algal blooms (HAB) events. Increasingly frequent HAB events pose ecological, environmental, economic, and health risks to the region by degrading water quality and introducing environmental toxins. Using NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer we apply two hyperspectral aquatic remote sensing algorithms; cyanobacteria index (CI) and scattering line height (SLH). These algorithms detect and characterize spatiotemporal variability of cyanobacteria, a key HAB taxa. Originally designed to study atmospheric mineral dust, EMIT’s data products provide novel opportunities for detailed aquatic characterizations with both high spatial and high spectral resolution. Adding aquatic capabilities for EMIT would introduce a novel and cost-effective tool for monitoring and studying the drivers and timing of HAB onset, to improve our understanding of environmental dynamics.
      Emma Iacono
      Reassessing multidecadal trends in Water Clarity for the central and southern California Current System
      Emma Iacono, North Carolina State University
      Over the past several decades, the world has witnessed a steady rise in average global temperatures, a clear indication of the escalating effects of climate change. In 1990, Andrew Bakun hypothesized that unequal warming of sea and land surface temperatures would increase pressure gradients and lead to rising rates of alongshore upwelling within Eastern Boundary Currents, including the California Current System (CCS). An anticipated increase in upwelling-favorable winds would have profound implications for the productivity of the CCS, wherein upwelled waters supply nutrient injections that sustain and fuel coastal ocean phytoplankton stocks. Increasing upwelling, therefore, is anticipated to increase the turbidity of the upper ocean, corresponding with greater phytoplankton concentrations. Historical observations of turbidity are supported by observations obtained using a Secchi Disk, i.e., an opaque white instrument lowered into the water column. Observations of Secchi depth—or the depth at which light reflected from the Secchi Disk is no longer visible from the surface—provide a quantification of light penetration into the euphotic zone. The shoaling, or shallowing, of Secchi disk depths was previously reported for inshore, transition, and offshore waters of the central and southern CCS for historical observations spanning 1969 – 2007. Here, we reassess Secchi disk depths during the subsequent period spanning 2007 to 2021 and test for more recent changes in water clarity. Additionally, we evaluate the seasonality and spatial patterns of Secchi disk trends to test for potential changes to oceanic microbial ecology. Indications of long-term trends in some of the coastal domains assessed were found. Generally, our findings suggest a reversal of the trends previously reported. In particular, increases in water clarity likely associated with a recent marine heatwave (MHW) may be responsible for recent changes in Secchi disk depth observations, illustrating the importance of MHW events for modifying the CCS microbial ecosystem.

      Click here watch the Atmospheric Aerosols Group presentations.
      Click here watch the Terrestrial Ecology Group presentations.
      Click here watch the Whole Air Sampling (WAS) Group presentations.

      Return to 2024 SARP West Closeout Share
      Details
      Last Updated Sep 25, 2024 Related Terms
      General View the full article
  • Check out these Videos

×
×
  • Create New...