Jump to content

Weird alien-like fish spotted in the ocean’s twilight zone off the coast of California


Recommended Posts

Posted
I spy with my barreleye, a new Fresh from the Deep! During a dive with our education and outreach partner, the Monterey Bay Aquarium, the team came across a rare treat: a barreleye fish (Macropinna microstoma). 

AVvXsEiIHpwbvvjPHN_ZSPgjohWJNSgAvUxODvI0Y_J9-XUDbWfbn-WXdtK9QO7k9VTBlBgZGwI3r83T-b_a2QkQtpcnm3TXBbkqod-wmmD3FYV1UQ1Q_4tUnC1qLKNqy5VKm9RyYBiDEa_wwWTFq5teZiQYSI100_Au0128Tqkq5BorZPBAathkt2h_xiLXTA=w640-h360

MBARI’s remotely operated vehicles Ventana and Doc Ricketts have logged more than 5,600 successful dives and recorded more than 27,600 hours of video—yet we’ve only encountered this fish nine times! 

The barreleye lives in the ocean’s twilight zone, at depths of 600 to 800 meters (2,000 to 2,600 feet). Its eyes look upwards to spot its favorite prey—usually small crustaceans trapped in the tentacles of siphonophores—from the shadows they cast in the faint shimmer of sunlight from above. 

AVvXsEhsbHRdTeS57KsfMEVHsqY1kD1u7Lq_o7eXdPcWEdWI3F3NwPuRAD6AzU-XodJNEYlgZp9P9BU7EXewSYg6cB4n-yRATomiw5XykjgmuW2SmRC19jNX3wmyZ6HZXUggTdMAjWbIV0uLaNLGAkXl-rR1Slwrf-rskVSM9sfI8ADivSRUXYHTn1qP8kx1Qg=w640-h360

But how does this fish eat when its eyes point upward and its mouth points forward? 

MBARI researchers learned the barreleye can rotate its glowing green eyes beneath that dome (head) of transparent tissue. 

AVvXsEgEWfVEInRdB1xCLcocQVDyvoK1S222xhk6gQUoieXymQ2nOM4kfR3CqpKxGnhkPJht38A_qnGZSeQOnVLiq0FSRDj4bMzVynywCYaezHjz4JPR73DbGKIqyXu-F0FBXcKv2YKVP0LNki3qlK6F85fWRJfdvh_Q4rrrxDQ5F7Vi90ER3p_MBQU9o5r0RA=w640-h360

Aquarist Tommy Knowles and his team were aboard MBARI’s R/V Rachel Carson with our ROV Ventana to collect jellies and comb jellies for the Aquarium’s upcoming Into the Deep exhibition when they spotted this fascinating fish. The team stopped to marvel at Macropinna before it swam away.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth (ESD) Earth Explore Explore Earth Science Climate Change Air Quality Science in Action Multimedia Image Collections Videos Data For Researchers About Us 6 Min Read NASA Uses Advanced Radar to Track Groundwater in California
      The Friant-Kern Canal supports water management in California’s San Joaquin Valley. A new airborne campaign is using NASA radar technology to understand how snowmelt replenishes groundwater in the area. Credits:
      Bureau of Reclamation Where California’s towering Sierra Nevada surrender to the sprawling San Joaquin Valley, a high-stakes detective story is unfolding. The culprit isn’t a person but a process: the mysterious journey of snowmelt as it travels underground to replenish depleted groundwater reserves.  
      The investigator is a NASA jet equipped with radar technology so sensitive it can detect ground movements thinner than a nickel. The work could unlock solutions to one of the American West’s most pressing water challenges — preventing groundwater supplies from running dry.    
      “NASA’s technology has the potential to give us unprecedented precision in measuring where snowmelt is recharging groundwater,” said Erin Urquhart, program manager for NASA’s Earth Action Water Resources program at NASA Headquarters in Washington. “This information is vital for farmers, water managers, and policymakers trying to make the best possible decisions to protect water supplies for agriculture and communities.”  
      Tracking Water Beneath the Surface  
      In late February, a NASA aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) conducted the first of six flights planned for this year, passing over a roughly 25-mile stretch of the Tulare Basin in the San Joaquin Valley, where foothills meet farmland. It’s a zone experts think holds a key to maintaining water supplies for one of America’s most productive agricultural regions.   
      Much of the San Joaquin Valley’s groundwater comes from the melting of Sierra Nevada snow. “For generations, we’ve been managing water in California without truly knowing where that meltwater seeps underground and replenishes groundwater,” said Stanford University geophysicist and professor Rosemary Knight, who is leading the research.    
      This image from the MODIS instrument on NASA’s Terra satellite, captured on March 8, 2025, shows the Tulare Basin area in Southern California, where foothills meet farmlands. The region is a crucial area for groundwater recharge efforts aimed at making the most of the state’s water resources. Credits: NASA Earth Observatory image by Michala Garrison, using MODIS data from NASA EOSDIS LANCE and GIBS/Worldview. The process is largely invisible — moisture filtering through rock and sediment, and vanishing beneath orchards and fields. But as the liquid moves downhill, it follows a pattern. Water flows into rivers and streams, some of it eventually seeping underground at the valley’s edge or as the waterways spread into the valley. As the water moves through the ground, it can create slight pressure that in turn pushes the surface upward. The movement is imperceptible to the human eye, but NASA’s advanced radar technology can detect it.  
      “Synthetic aperture radar doesn’t directly see water,” explained Yunling Lou, who leads the UAVSAR program at NASA’s Jet Propulsion Laboratory in Southern California. “We’re measuring changes in surface elevation — smaller than a centimeter — that tell us where the water is.”   
      These surface bulges create what Knight calls an “InSAR recharge signature.” By tracking how these surface bulges migrate from the mountains into the valley, the team hopes to pinpoint where groundwater replenishment occurs and, ultimately, quantify the amount of water naturally recharging the system.  
      Previous research using satellite-based InSAR (Interferometric Synthetic Aperture Radar) has shown that land in the San Joaquin Valley uplifts and subsides with the seasons, as the groundwater is replenished by Sierra snowmelt. But the satellite radar couldn’t uniquely identify the recharge paths. Knight’s team combined the satellite data with images of underground sediments, acquired using an airborne electromagnetic system, and was able to map the major hidden subsurface water pathways responsible for aquifer recharge.   
      NASA’s airborne UAVSAR system will provide even more detailed data, potentially allowing researchers to have a clearer view of where and how fast water is soaking back into the ground and recharging the depleted aquifers.  
      In 2025, NASA’s UAVSAR system on a Gulfstream-III jet (shown over a desert landscape) is conducting six planned advanced radar surveys to map how and where groundwater is recharging parts of California’s southern San Joaquin Valley. Credits: NASA Supporting Farmers and Communities   
      California’s Central Valley produces over a third of America’s vegetables and two-thirds of its fruits and nuts. The southern portion of this agricultural powerhouse is the San Joaquin Valley, where most farming operations rely heavily on groundwater, especially during drought years.   
      Water managers have occasionally been forced to impose restrictions on groundwater pumping as aquifer levels drop. Some farmers now drill increasingly deeper wells, driving up costs and depleting reserves.  
        
      “Knowing where recharge is happening is vital for smart water management,” said Aaron Fukuda, general manager of the Tulare Irrigation District, a water management agency in Tulare County that oversees irrigation and groundwater recharge projects.   
      “In dry years, when we get limited opportunities, we can direct flood releases to areas that recharge efficiently, avoiding places where water would just evaporate or take too long to soak in,” Fukuda said. “In wetter years, like 2023, it’s even more crucial — we need to move water into the ground as quickly as possible to prevent flooding and maximize the amount absorbed.”  
      NASA’s Expanding Role in Water Monitoring  
      NASA’s ongoing work to monitor and manage Earth’s water combines a range of cutting-edge technologies that complement one another, each contributing unique insights into the challenges of groundwater management.  
      The upcoming NISAR (NASA-ISRO Synthetic Aperture Radar) mission, a joint project between NASA and the Indian Space Research Organisation (ISRO) set to launch in coming months, will provide global-scale radar data to track land and ice surface changes — including signatures of groundwater movement — every 12 days.    
      The NISAR satellite (shown in this artist’s concept) has a large radar antenna designed to monitor Earth’s land and ice changes with unprecedented detail. Credits: NASA/JPL-Caltech In parallel, the GRACE satellites — operated by the German Aerospace Center, German Research Centre for Geosciences, and NASA — have transformed global groundwater monitoring by detecting tiny variations in Earth’s gravity, offering a broad view of monthly water storage changes across large regions.   
      The Gravity Recovery and Climate Experiment and Follow-On (GRACE and GRACE-FO) missions have helped expose major declines in aquifers, including in California’s Central Valley. But their coarser resolution calls for complementary tools that can, for example, pinpoint recharge hotspots with greater precision.  
      Together, these technologies form a powerful suite of tools that bridge the gap between regional-scale monitoring and localized water management. NASA’s Western Water Applications Office (WWAO) also plays a key role in ensuring that this wealth of data is accessible to water managers and others, offering platforms like the Visualization of In-situ and Remotely-Sensed Groundwater Observation (VIRGO) dashboard to facilitate informed decision-making.  
      “Airborne campaigns like this one in the San Joaquin test how our technology can deliver tangible benefits to American communities,” said Stephanie Granger, WWAO’s director at NASA’s Jet Propulsion Laboratory. “We partner with local water managers to evaluate tools that have the potential to strengthen water supplies across the Western United States.”  
        
      By Emily DeMarco  
      NASA Headquarters  
      About the Author
      Emily DeMarco

      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Earth Droughts Floods Water on Earth Explore More
      6 min read NASA Data Supports Everglades Restoration
      Florida’s coastal wetlands face new threats as sea levels and temperatures climb. NASA’s BlueFlux Campaign…


      Article


      6 days ago
      8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
      In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…


      Article


      7 days ago
      5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.

      View the full article
    • By NASA
      A group of attendees of the joint NASA-USGS workshop, Planetary Subsurface Exploration for Science and Resources, gathers for a photo at NASA’s Ames Research Center on Feb. 11, 2025. Workshop participants discussed observations, technologies, and operations needed to support new economies for terrestrial and off-world resources, including critical minerals.NASA/Brandon Torres Navarrete NASA and the U.S. Geological Survey (USGS) welcomed a community of government, industry, and international partners to explore current technology needs around natural resources – both on Earth and “off world.” During a workshop held in February at NASA’s Ames Research Center in California’s Silicon Valley, participants discussed technologies that will improve the ability to detect, assess, and develop resources, such as critical minerals and water ice to be found on our Moon, other planets and their moons, and asteroids.
      More than 300 attendees, taking part in person and virtually, worked to define the elements needed to find and map resources beyond Earth to support the growing space economy. These include sensors to image the subsurface of planetary bodies, new platforms for cost-effective operations, and technologies that enable new concepts of operation for these systems.
      Scientific studies and measurements of off-world sites will be key to detecting and characterizing resources of interest, creating an important synergy with technology goals and helping to answer fundamental science questions as well.
      The workshop was the third in a series called Planetary Subsurface Exploration for Science and Resources. By leveraging the expertise gained from decades of resource exploration on this planet and that of the space technology and space mission communities, NASA and USGS aim to spark collaboration across industry, government, and academia to develop new concepts and technologies.
      Participants in the NASA-USGS off-world resources workshop take part in a panel review of technology opportunities, Feb. 13, 2025, at NASA’s Ames Research Center. The panelists were Dave Alfano, chief of the Intelligent Systems Division at NASA’s Ames Research Center in California’s Silicon Valley (left); Rob Mueller, a senior technologist and principal investigator in the Exploration Research and Technology Programs Directorate at NASA’s Kennedy Space Center in Florida; Christine Stewart, CEO at Austmine Limited in Australia; Gerald Sanders, in-situ resource utilization system capability lead for NASA’s Space Technology Mission Directorate based at NASA’s Johnson Space Center in Houston; and Jonathon Ralston, Integrated Mining Research Team lead at Australia’s Commonwealth Scientific and Industrial Research Organisation. NASA/Brandon Torres Navarrete
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An artist’s concept depicts one of NASA’s Voyager probes. The twin spacecraft launched in 1977.NASA/JPL-Caltech The farthest-flung human-made objects will be able to take their science-gathering even farther, thanks to these energy-conserving measures.
      Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes.
      Launched in 1977, Voyagers 1 and 2 rely on a radioisotope power system that generates electricity from the heat of decaying plutonium. Both lose about 4 watts of power each year.
      “The Voyagers have been deep space rock stars since launch, and we want to keep it that way as long as possible,” said Suzanne Dodd, Voyager project manager at JPL. “But electrical power is running low. If we don’t turn off an instrument on each Voyager now, they would probably have only a few more months of power before we would need to declare end of mission.”
      The two spacecraft carry identical sets of 10 science instruments. Some of the instruments, geared toward collecting data during planetary flybys, were turned off after both spacecraft completed their exploration of the solar system’s gas giants.
      The instruments that remained powered on well beyond the last planetary flyby were those the science team considered important for studying the solar system’s heliosphere, a protective bubble of solar wind and magnetic fields created by the Sun, and interstellar space, the region outside the heliosphere. Voyager 1 reached the edge of the heliosphere and the beginning of interstellar space in 2012; Voyager 2 reached the boundary in 2018. No other human-made spacecraft has operated in interstellar space.
      Last October, to conserve energy, the project turned off Voyager 2’s plasma science instrument, which measures the amount of plasma — electrically charged atoms — and the direction it is flowing. The instrument had collected only limited data in recent years due to its orientation relative to the direction that plasma flows in interstellar space. Voyager 1’s plasma science instrument had been turned off years ago because of degraded performance.
      Interstellar Science Legacy
      The cosmic ray subsystem that was shut down on Voyager 1 last week is a suite of three telescopes designed to study cosmic rays, including protons from the galaxy and the Sun, by measuring their energy and flux. Data from those telescopes helped the Voyager science team determine when and where Voyager 1 exited the heliosphere.
      Scheduled for deactivation later this month, Voyager 2’s low-energy charged particle instrument measures the various ions, electrons, and cosmic rays originating from our solar system and galaxy. The instrument consists of two subsystems: the low-energy particle telescope for broader energy measurements, and the low-energy magnetospheric particle analyzer for more focused magnetospheric studies.
      Both systems use a rotating platform so that the field of view is 360 degrees, and the platform is powered by a stepper motor that provides a 15.7-watt pulse every 192 seconds. The motor was tested to 500,000 steps — enough to guarantee continuous operation through the mission’s encounters with Saturn, which occurred in August 1980 for Voyager 2. By the time it is deactivated on Voyager 2, the motor will have completed more than 8.5 million steps.
      “The Voyager spacecraft have far surpassed their original mission to study the outer planets,” said Patrick Koehn, Voyager program scientist at NASA Headquarters in Washington. “Every bit of additional data we have gathered since then is not only valuable bonus science for heliophysics, but also a testament to the exemplary engineering that has gone into the Voyagers — starting nearly 50 years ago and continuing to this day.”
      Addition Through Subtraction
      Mission engineers have taken steps to avoid turning off science instruments for as long as possible because the science data collected by the twin Voyager probes is unique. With these two instruments turned off, the Voyagers should have enough power to operate for about a year before the team needs to shut off another instrument on both spacecraft.
      In the meantime, Voyager 1 will continue to operate its magnetometer and plasma wave subsystem. The spacecraft’s low-energy charged particle instrument will operate through the remainder of 2025 but will be shut off next year.  
      Voyager 2 will continue to operate its magnetic field and plasma wave instruments for the foreseeable future. Its cosmic ray subsystem is scheduled to be shut off in 2026.
      With the implementation of this power conservation plan, engineers believe the two probes could have enough electricity to continue operating with at least one science instrument into the 2030s. But they are also mindful that the Voyagers have been weathering deep space for 47 years and that unforeseen challenges could shorten that timeline.
      Long Distance
      Voyager 1 and Voyager 2 remain the most distant human-made objects ever built. Voyager 1 is more than 15 billion miles (25 billion kilometers) away. Voyager 2 is over 13 billion miles (21 billion kilometers) from Earth.
      In fact, due to this distance, it takes over 23 hours to get a radio signal from Earth to Voyager 1, and 19½ hours to Voyager 2.
      “Every minute of every day, the Voyagers explore a region where no spacecraft has gone before,” said Linda Spilker, Voyager project scientist at JPL. “That also means every day could be our last. But that day could also bring another interstellar revelation. So, we’re pulling out all the stops, doing what we can to make sure Voyagers 1 and 2 continue their trailblazing for the maximum time possible.”
      For more information about NASA’s Voyager missions, visit:
      https://science.nasa.gov/mission/voyager
      News Media Contacts
      DC Agle / Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-653-6297 / 626-808-2469
      agle@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov
      2025-032
      Share
      Details
      Last Updated Mar 05, 2025 Related Terms
      Jet Propulsion Laboratory Explore More
      3 min read University High Knows the Answers at NASA JPL Regional Science Bowl
      Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires
      Article 5 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By USH
      In the depths of the ocean, where countless strange fish and creatures dwell in perpetual darkness, they remain unseen, unless unexpectedly caught. This was the case during an expedition by a Russian deep-sea fisherman, who was stunned when he reeled in a bizarre creature that strikingly resembled an alien’s head. 

      The eerie catch was made by Roman Fedortsov during an expedition in the northern Pacific Ocean. 
      The fisherman shared the video of the strange creature with his followers, with viewers comparing the bulbous fish to an extraterrestrial or even Krang, the villain from Teenage Mutant Ninja Turtles. 
      Fisherman Fedortsov has previously made headlines thanks to other weird and wonderful catches which you can view at Dailymail. 
      Despite its eerie appearance, the fish was not an alien or a mutant but rather a species known as the smooth lumpsucker, a deep-sea fish recognized for its distinctive, gelatinous look.
        View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Compact Fire Infrared Radiance Spectral tracker, or C-FIRST, is managed an operated by NASA’s Jet Propulsion Laboratory, and supported by NASA’s Earth Science Technology Office. Combining state-of-the-art imaging technology with a compact design, C-FIRST enables scientists to gather data about fires and their impacts on ecosystems with greater accuracy and speed than other instruments. C-FIRST was developed as a spaceborne instrument, and flew onboard NASA’s B200 aircraft in January 2025 to conduct an airborne test.NASA/JPL-Caltech The January wildfires in California devastated local habitats and communities. In an effort to better understand wildfire behavior, NASA scientists and engineers tried to learn from the events by testing new technology.
      The new instrument, the Compact Fire Infrared Radiance Spectral Tracker (c-FIRST), was tested when NASA’s B200 King Air aircraft flew over the wildfires in the Pacific Palisades and Altadena, California. Based at NASA’s Armstrong Flight Research Center in Edwards, California, the aircraft used the c-FIRST instrument to observe the impacts of the fires in near real-time. Due to its small size and ability to efficiently simulate a satellite-based mission, the B200 King Air is uniquely suited for testing c-FIRST.
      Managed and operated by NASA’s Jet Propulsion Laboratory in Southern California, c-FIRST gathers thermal infrared images in high-resolution and other data about the terrain to study the impacts of wildfires on ecology. In a single observation, c-FIRST can capture the full temperature range across a wide area of wildland fires – as well as the cool, unburned background – potentially increasing both the quantity and quality of science data produced.
      “Currently, no instrument is able to cover the entire range of attributes for fires present in the Earth system,” said Sarath Gunapala, principal investigator for c-FIRST at NASA JPL. “This leads to gaps in our understanding of how many fires occur, and of crucial characteristics like size and temperature.”
      For decades, the quality of infrared images has struggled to convey the nuances of high-temperature surfaces above 1,000 degrees Fahrenheit (550 degrees Celsius). Blurry resolution and light saturation of infrared images has inhibited scientists’ understanding of an extremely hot terrain, and thereby also inhibited wildfire research. Historically, images of extremely hot targets often lacked the detail scientists need to understand the range of a fire’s impacts on an ecosystem.
      NASA’s Armstrong Flight Research Center in Edwards, California, flew the B200 King Air in support of the Signals of Opportunity Synthetic Aperture Radar (SoOpSAR) campaign on Feb. 27, 2023.NASA/Steve Freeman To address this, NASA’s Earth Science Technology Office supported JPL’s development of the c-FIRST instrument, combining state-of-the-art imaging technology with a compact and efficient design. When c-FIRST was airborne, scientists could detect smoldering fires more accurately and quickly, while also gathering important information on active fires in near real-time.
      “These smoldering fires can flame up if the wind picks up again,” said Gunapala. “Therefore, the c-FIRST data set could provide very important information for firefighting agencies to fight fires more effectively.”
      For instance, c-FIRST data can help scientists estimate the likelihood of a fire spreading in a certain landscape, allowing officials to more effectively monitor smoldering fires and track how fires evolve. Furthermore, c-FIRST can collect detailed data that can enable scientists to understand how an ecosystem may recover from fire events.
      “The requirements of the c-FIRST instrument meet the flight profile of the King Air,” said KC Sujan, operations engineer for the B200 King Air. “The c-FIRST team wanted a quick integration, the flight speed in the range 130 and 140 knots on a level flight, communication and navigation systems, and the instruments power requirement that are perfectly fit for King Air’s capability.”
      By first testing the instrument onboard the B200 King Air, the c-FIRST team can evaluate its readiness for future satellite missions investigating wildfires. On a changing planet where wildfires are increasingly common, instruments like c-FIRST could provide data that can aid firefighting agencies to fight fires more effectively, and to understand the ecosystemic impacts of extreme weather events.
      Share
      Details
      Last Updated Feb 28, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Earth Science Airborne Science Armstrong Flight Research Center B200 Earth Science Technology Office Earth's Atmosphere General Jet Propulsion Laboratory Explore More
      1 min read Commodity Classic Hyperwall Schedule
      NASA Science at Commodity Classic Hyperwall Schedule, March 2-4, 2025 Join NASA in the Exhibit…
      Article 1 day ago 5 min read Fourth Launch of NASA Instruments Planned for Near Moon’s South Pole
      Article 2 days ago 3 min read NASA Names Stephen Koerner as Acting Director of Johnson Space Center
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Earth Science Projects Division
      Aircraft Flown at Armstrong
      Science in the Air
      View the full article
  • Check out these Videos

×
×
  • Create New...