Jump to content

Researchers Rewind the Clock to Calculate Age and Site of Supernova Blast


HubbleSite

Recommended Posts

low_STScI-H-p2102a-k-1340x520.png

Sometime during the third century, a brilliant burst of light from the explosion of a massive star was visible from Earth.

If the supernova blast had flashed over the northern hemisphere, it might have been considered an evil omen. At that time, Western Civilization was in upheaval. The Roman Empire was beginning to crumble. An emperor was assassinated, followed by political upheavals, civil wars, and barbarian attacks.

But the violent supernova death could only be seen in the southern skies. The blast occurred in the nearby satellite galaxy, the Small Magellanic Cloud. No record exists of the titanic event. However, like the smoke and ash drifting across the sky after an aerial fireworks blast, the supernova left behind a cloud of debris that is still rapidly expanding today. This cloud provides forensic evidence for astronomical detectives to retrace the explosion.

Astronomers sifting through Hubble observations of the supernova remnant, taken 10 years apart, have calculated the cloud's expansion rate. Analyzing the data was like rewinding a movie. The researchers traced the path of all the debris flung from the explosion back to the point in space where the doomed star blew apart. Their analysis reveals that the light from the exploded star reached Earth 1,700 years ago.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.
      One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation. Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory. The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology. The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.
      Syncing Up Across the Solar System
      “Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”
      If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.
      Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.
      The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.
      While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.
      Syncing Clocks, Linking Telescopes to See More than Ever Before
      When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.
      “If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”
      The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.
      For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.
      The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.
      An Optical Atomic Clock Built for Space Travel
      Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.
      While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.
      The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman “Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.
      The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.
      “When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”
      The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.
      More on cutting-edge technology development at NASA Goddard By Matthew Kaufman, with additional contributions from Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Communicating and Navigating with Missions Goddard Space Flight Center Technology View the full article
    • By NASA
      3 min read
      NASA’s Mini BurstCube Mission Detects Mega Blast
      The shoebox-sized BurstCube satellite has observed its first gamma-ray burst, the most powerful kind of explosion in the universe, according to a recent analysis of observations collected over the last several months.
      “We’re excited to collect science data,” said Sean Semper, BurstCube’s lead engineer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s an important milestone for the team and for the many early career engineers and scientists that have been part of the mission.”
      The event, called GRB 240629A, occurred on June 29 in the southern constellation Microscopium. The team announced the discovery in a GCN (General Coordinates Network) circular on August 29.
      BurstCube, trailed by another CubeSat named SNOOPI (Signals of Opportunity P-band Investigation), emerges from the International Space Station on April 18, 2024. NASA/Matthew Dominick BurstCube deployed into orbit April 18 from the International Space Station, following a March 21 launch.
      The mission was designed to detect, locate, and study short gamma-ray bursts, brief flashes of high-energy light created when superdense objects like neutron stars collide. These collisions also produce heavy elements like gold and iodine, an essential ingredient for life as we know it. 
      BurstCube is the first CubeSat to use NASA’s TDRS (Tracking and Data Relay Satellite) system, a constellation of specialized communications spacecraft. Data relayed by TDRS (pronounced “tee-driss”) help coordinate rapid follow-up measurements by other observatories in space and on the ground through NASA’s GCN.
      BurstCube also regularly beams data back to Earth using the Direct to Earth system — both it and TDRS are part of NASA’s Near Space Network.
      After BurstCube deployed from the space station, the team discovered that one of the two solar panels failed to fully extend. It obscures the view of the mission’s star tracker, which hinders orienting the spacecraft in a way that minimizes drag. The team originally hoped to operate BurstCube for 12-18 months, but now estimates the increased drag will cause the satellite to re-enter the atmosphere in September. 
      “I’m proud of how the team responded to the situation and is making the best use of the time we have in orbit,” said Jeremy Perkins, BurstCube’s principal investigator at Goddard. “Small missions like BurstCube not only provide an opportunity to do great science and test new technologies, like our mission’s gamma-ray detector, but also important learning opportunities for the up-and-coming members of the astrophysics community.”
      BurstCube is led by Goddard. It’s funded by the Science Mission Directorate’s Astrophysics Division at NASA Headquarters. The BurstCube collaboration includes: the University of Alabama in Huntsville; the University of Maryland, College Park; the Universities Space Research Association in Washington; the Naval Research Laboratory in Washington; and NASA’s Marshall Space Flight Center in Huntsville.

      Download high-resolution photos and videos of BurstCube

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUnvierse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Sep 03, 2024 Related Terms
      Astrophysics BurstCube CubeSats Gamma Rays Gamma-Ray Bursts Goddard Space Flight Center Small Satellite Missions The Universe View the full article
    • By Space Force
      SpaceWERX Director Arthur Grijalva made the announcement at the conclusion of the panel titled SpaceWERX STRATFI Successes and Selections, at Capital Factory, the home of AFWERX’s Austin hub.

      View the full article
    • By NASA
      2 min read
      Hubble Spotlights a Supernova
      This NASA/ESA Hubble Space Telescope image reveals the galaxy LEDA 857074. Credit: ESA/Hubble & NASA, R. J. Foley This NASA/ESA Hubble Space Telescope image features the galaxy LEDA 857074, located in the constellation Eridanus. LEDA 857074 is a barred spiral galaxy, with partially broken spiral arms. The image also captured a supernova, named SN 2022ADQZ, shining brightly on the right side of the galaxy’s bar.
      Several evolutionary paths can lead to a supernova explosion. One is the death of a supermassive star. When a supermassive star runs out of its hydrogen fuel, it begins a stage where it fuses the remaining elements to heavier and heavier ones. These final fusion reactions generate less and less outward force (radiation pressure) to balance the star’s gravitational tug inward. As heavier elements form in the star’s core, the core itself begins to fully collapse under its own gravity, and the star’s outer layers blast away in a supernova explosion. Depending on the star’s original mass, its core may collapse to nothing but neutrons, leaving behind a neutron star, or its gravity may be so great that it collapses to a black hole.
      Astronomers detected supernova SN 2022ADQZ with an automated survey in late 2022. This discovery led them to look at the supernova’s host galaxy, LEDA 857074, with Hubble in early 2023.
      Hubble’s sharp vision means that it can see supernovae that are billions of light years away and difficult for other telescopes to study. A supernova image from the ground usually blends in with the image of its host galaxy, but Hubble can distinguish a supernova’s light from its host galaxy’s, measuring the supernova directly.
      Astronomers detect thousands of supernovae annually, but the chance that they spot one in any particular galaxy of the millions that are cataloged is slim. Thanks to this supernova, LEDA 857074 joins the ranks of other celestial objects with its own Hubble image.

      Download Image

      Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 09, 2024 Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Science & Research Science Mission Directorate Supernovae The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies



      Hubble’s Galaxies



      Hubble News


      View the full article
    • By NASA
      The Cabeus supercomputer at the NASA Advanced Supercomputing Facility at NASA’s Ames Research Center in California’s Silicon Valley NASA/Michelle Moyer Under a new agreement, NASA will host supercomputing resources for the University of California, Berkeley, at the agency’s Ames Research Center in California’s Silicon Valley. The agreement is part of an expanding partnership between Ames and UC Berkeley and will support the development of novel computing algorithms and software for a wide variety of scientific and technology areas.
      Per the three-year Reimbursable Space Act Agreement, the UC Berkeley supercomputer and storage systems will be hosted at the NASA Advanced Supercomputing Facility – the agency’s premiere supercomputing center. UC Berkeley researchers will benefit from NASA’s capability in optimizing modern computing codes. NASA will gain from exchanging with the university best practices in operating and maintaining high-performance computing systems.
      The newest addition to the UC Berkeley “Savio” supercomputer will be housed within a NASA data center and will consist of 192 dual Intel Ice Lake Xeon processor nodes, 32 NVIDIA graphics processor unit accelerated nodes, and 1.3 petabytes of high-performance flash storage.
      The agreement complements the joint venture announced in October 2023 between UC Berkeley and developer SKS Partners to build the proposed Berkeley Space Center at NASA Research Park, located at Ames. The project is envisioned as a 36-acre discovery and innovation hub to include educational spaces, labs, offices, student housing, and a new conference center. 
      “Supporting UC Berkeley in various aspects of supercomputing operations adds an important component to our existing collaboration and opens up exciting possibilities for gaining new knowledge in aeronautical and space sciences, materials sciences, and information science and technologies,” said Rupak Biswas, director, Exploration Technology at NASA Ames.
      For more than four decades, the NASA Advanced Supercomputing facility has provided leadership in NASA high-end computing technologies and services for agency missions and projects in aeronautics research, launch vehicle analysis, entry systems technologies, Earth and planetary science, astrophysics, and heliophysics. Learn more about Ames’ world-class supercomputing capabilities and services, here.
      Author: Jill Dunbar, NASA Advanced Supercomputing Division, NASA’s Ames Research Center
      Share
      Details
      Last Updated Aug 02, 2024 Related Terms
      General Ames Research Center Ames Research Center's Science Directorate High-Tech Computing NASA Centers & Facilities Technology View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...