Jump to content

Recommended Posts

Posted
Rover_escapes_from_sand_trap_card_full.p Video: 00:01:09

The ExoMars rover used in the Earth-based Mars Terrain Simulator makes escaping from a sand trap look easy in this exercise.

The rover initially has its front two wheels almost completely buried in sand, but easily escapes using its unique wheel-walking mode.

It takes about 20 minutes to complete the 2 m drive – slow and careful being the key to getting out of a difficult situation.

Rovers on Mars have previously been caught in sand, and turning the wheels dug them deeper, just like a car stuck in mud or snow. To avoid this, the ExoMars rover Rosalind Franklin – and its replica – has a unique wheel walking locomotion mode. Similar to leg movements, wheel-walking combines motions of the deployment actuators (the legs) with the rotation of the wheels to progress without slippage. This motion gives very good traction in soft soils and high slopes, such as dunes.

“We hope to never need to use wheel walking on Mars to escape dangerous sand traps, but we are glad to have such functionality to potentially safeguard the mission,” comments Luc Joudrier, ESA ExoMars Rover Operations Manager. “From a rover operational point of view, this is really our insurance again difficult terrains.”

In the test run seen here, the back wheels drag once the front four wheels have gained good traction on firmer terrain. The reason is that the wheel-walking sequence tested here has rather been optimised for climbing steep slopes with loose soils. In this sequence of commands, a short rotation of the wheel follows each movement of the legs. This is to anchor the wheels, digging them a little bit into the soil, before moving the rest – like when you climb a slope with snow and firm up each step before making a new one. On firmer soils, the anchoring rotation is not as effective (it can create the dragging effect) and therefore can be excluded from the command sequence.

The activity took place in the Mars Terrain Simulator at the Rover Operations Control Centre at the ALTEC premises, at Thales Alenia Space facilities in Turin, Italy in November 2021. It is from here that rover science operations will take place once Rosalind Franklin lands on Mars in June 2023. In the meantime, the facility is being used for training rover operators and simulating science operations that will be expected in the main mission.

More about ExoMars.

Related:

ExoMars – Moving on Mars
ExoMars – Testing locomotion
Moving on Mars

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance Mars rover used its right-front navigation camera to capture this first view over the rim of Jezero Crater on Dec. 10, 2024, the 1,354th Martian day, or sol, of the mission. The camera is facing west from a location nicknamed “Lookout Hill.”NASA/JPL-Caltech NASA’s Perseverance Mars rover captured this scene showing the slippery terrain that’s made its climb up to the rim of Jezero Crater challenging. Rover tracks can be seen trailing off into the distance, back toward the crater’s floor.NASA/JPL-Caltech The road ahead will be even more scientifically intriguing, and probably somewhat easier-going, now that the six-wheeler has completed its long climb to the top.
      NASA’s Perseverance Mars rover has crested the top of Jezero Crater’s rim at a location the science team calls “Lookout Hill” and rolling toward its first science stop after the monthslong climb. The rover made the ascent in order to explore a region of Mars unlike anywhere it has investigated before.
      Taking about 3½ months and ascending 1,640 vertical feet (500 vertical meters), the rover climbed 20% grades, making stops along the way for science observations. Perseverance’s science team shared some of their work and future plans at a media briefing held Thursday, Dec. 12, in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
      “During the Jezero Crater rim climb, our rover drivers have done an amazing job negotiating some of the toughest terrain we’ve encountered since landing,” said Steven Lee, deputy project manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “They developed innovative approaches to overcome these challenges — even tried driving backward to see if it would help — and the rover has come through it all like a champ. Perseverance is ‘go’ for everything the science team wants to throw at it during this next science campaign.”
      A scan across a panorama captured by NASA’s Perseverance Mars rover shows the steepness of the terrain leading to the rim of Jezero Crater. The rover’s Mastcam-Z camera system took the images that make up this view on Dec. 5. NASA/JPL-Caltech/ASU/MSSS Since landing at Jezero in February 2021, Perseverance has completed four science campaigns: the “Crater Floor,” “Fan Front,” “Upper Fan,” and “Margin Unit.” The science team is calling Perseverance’s fifth campaign the “Northern Rim” because its route covers the northern part of the southwestern section of Jezero’s rim. Over the first year of the Northern Rim campaign, the rover is expected to visit as many as four sites of geologic interest, take several samples, and drive about 4 miles (6.4 kilometers).
      “The Northern Rim campaign brings us completely new scientific riches as Perseverance roves into fundamentally new geology,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena. “It marks our transition from rocks that partially filled Jezero Crater when it was formed by a massive impact about 3.9 billion years ago to rocks from deep down inside Mars that were thrown upward to form the crater rim after impact.”
      This animation shows the position of NASA’s Perseverance Mars rover as of Dec. 4, 2024, the 1,347th Martian day, or sol, of the mission, along with the proposed route of the mission’s fifth science campaign, dubbed Northern Rim, over the next several years. NASA/JPL-Caltech/ESA/University of Arizona “These rocks represent pieces of early Martian crust and are among the oldest rocks found anywhere in the solar system. Investigating them could help us understand what Mars — and our own planet — may have looked like in the beginning,” Farley added.
      First Stop: ‘Witch Hazel Hill’
      With Lookout Hill in its rearview mirror, Perseverance is headed to a scientifically significant rocky outcrop about 1,500 feet (450 meters) down the other side of the rim that the science team calls “Witch Hazel Hill.”
      “The campaign starts off with a bang because Witch Hazel Hill represents over 330 feet of layered outcrop, where each layer is like a page in the book of Martian history. As we drive down the hill, we will be going back in time, investigating the ancient environments of Mars recorded in the crater rim,” said Candice Bedford, a Perseverance scientist from Purdue University in West Layfette, Indiana. “Then, after a steep descent, we take our first turns of the wheel away from the crater rim toward ‘Lac de Charmes,’ about 2 miles south.”
      Lac de Charmes intrigues the science team because, being located on the plains beyond the rim, it is less likely to have been significantly affected by the formation of Jezero Crater.
      After leaving Lac de Charmes, the rover will traverse about a mile (1.6 kilometers) back to the rim to investigate a stunning outcrop of large blocks known as megabreccia. These blocks may represent ancient bedrock broken up during the Isidis impact, a planet-altering event that likely excavated deep into the Martian crust as it created an impact basin some 745 miles (1,200 kilometers) wide, 3.9 billion years in the past.
      More About Perseverance
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-174
      Share
      Details
      Last Updated Dec 12, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
      5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 21 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
      Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
      Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Use your mouse to explore this 360-degree view of Gediz Vallis channel, a region of Mars that NASA’s Curiosity rover surveyed before heading west to new adventures. NASA/JPL-Caltech/MSSS The rover captured a 360-degree panorama before leaving Gediz Vallis channel, a feature it’s been exploring for the past year.
      NASA’s Curiosity rover is preparing for the next leg of its journey, a monthslong trek to a formation called the boxwork, a set of weblike patterns on Mars’ surface that stretches for miles. It will soon leave behind Gediz Vallis channel, an area wrapped in mystery. How the channel formed so late during a transition to a drier climate is one big question for the science team. Another mystery is the field of white sulfur stones the rover discovered over the summer.
      Curiosity imaged the stones, along with features from inside the channel, in a 360-degree panorama before driving up to the western edge of the channel at the end of September.
      The rover is searching for evidence that ancient Mars had the right ingredients to support microbial life, if any formed billions of years ago, when the Red Planet held lakes and rivers. Located in the foothills of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, Gediz Vallis channel may help tell a related story: what the area was like as water was disappearing on Mars. Although older layers on the mountain had already formed in a dry climate, the channel suggests that water occasionally coursed through the area as the climate was changing.
      Scientists are still piecing together the processes that formed various features within the channel, including the debris mound nicknamed “Pinnacle Ridge,” visible in the new 360-degree panorama. It appears that rivers, wet debris flows, and dry avalanches all left their mark. The science team is now constructing a timeline of events from Curiosity’s observations.
      NASA’s Curiosity captured this panorama using its Mastcam while heading west away from Gediz Vallis channel on Nov. 2, 2024, the 4,352nd Martian day, or sol, of the mission. The Mars rover’s tracks across the rocky terrain are visible at right.NASA/JPL-Caltech/MSSS The science team is also trying to answer some big questions about the sprawling field of sulfur stones. Images of the area from NASA’s Mars Reconnaissance Orbiter (MRO) showed what looked like an unremarkable patch of light-colored terrain. It turns out that the sulfur stones were too small for MRO’s High-Resolution Imaging Science Experiment (HiRISE) to see, and Curiosity’s team was intrigued to find them when the rover reached the patch. They were even more surprised after Curiosity rolled over one of the stones, crushing it to reveal yellow crystals inside.
      Science instruments on the rover confirmed the stone was pure sulfur — something no mission has seen before on Mars. The team doesn’t have a ready explanation for why the sulfur formed there; on Earth, it’s associated with volcanoes and hot springs, and no evidence exists on Mount Sharp pointing to either of those causes.
      “We looked at the sulfur field from every angle — from the top and the side — and looked for anything mixed with the sulfur that might give us clues as to how it formed. We’ve gathered a ton of data, and now we have a fun puzzle to solve,” said Curiosity’s project scientist Ashwin Vasavada at NASA’s Jet Propulsion Laboratory in Southern California.
      NASA’s Curiosity Mars rover captured this last look at a field of bright white sulfur stones on Oct. 11, before leaving Gediz Vallis channel. The field was where the rover made the first discovery of pure sulfur on Mars. Scientists are still unsure exactly why theses rocks formed here. Spiderwebs on Mars
      Curiosity, which has traveled about 20 miles (33 kilometers) since landing in 2012, is now driving along the western edge of Gediz Vallis channel, gathering a few more panoramas to document the region before making tracks to the boxwork.
      Viewed by MRO, the boxwork looks like spiderwebs stretching across the surface. It’s believed to have formed when minerals carried by Mount Sharp’s last pulses of water settled into fractures in surface rock and then hardened. As portions of the rock eroded away, what remained were the minerals that had cemented themselves in the fractures, leaving the weblike boxwork.
      On Earth, boxwork formations have been seen on cliffsides and in caves. But Mount Sharp’s boxwork structures stand apart from those both because they formed as water was disappearing from Mars and because they’re so extensive, spanning an area of 6 to 12 miles (10 to 20 kilometers).  
      Scientists think that ancient groundwater formed this weblike pattern of ridges, called boxwork, that were captured by NASA’s Mars Reconnaissance Orbiter on Dec. 10, 2006. The agency’s Curiosity rover will study ridges similar to these up close in 2025.NASA/JPL-Caltech/University of Arizona This weblike crystalline structure called boxwork is found in the ceiling of the Elk’s Room, part of Wind Cave National Park in South Dakota. NASA’s Curiosity rover is preparing for a journey to a boxwork formation that stretches for miles on Mars’ surface. “These ridges will include minerals that crystallized underground, where it would have been warmer, with salty liquid water flowing through,” said Kirsten Siebach of Rice University in Houston, a Curiosity scientist studying the region. “Early Earth microbes could have survived in a similar environment. That makes this an exciting place to explore.”
      More About Curiosity
      Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems (formerly Ball Aerospace & Technologies Corp.), in Boulder, Colorado. JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate in Washington.
      For more about these missions:
      science.nasa.gov/mission/msl-curiosity
      science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-160
      Share
      Details
      Last Updated Nov 18, 2024 Related Terms
      Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Explore More
      4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 4 days ago 5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
      Article 4 days ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4359-4361: The Perfect Road Trip Destination For Any Rover!
      NASA’s Mars rover Curiosity acquired this image of its workspace, which includes several targets for investigation — “Buttress Tree,” “Forester Pass,” “Crater Mountain,” “Mahogany Creek,” and “Filly Lake.” Curiosity used its Left Navigation Camera on Nov. 8, 2024 — sol 4357, or Martian day 4.357, of the Mars Science Laboratory mission — at 00:06:17 UTC. NASA/JPL-Caltech Earth planning date: Friday, Nov. 8, 2024
      After the excitement of Wednesday’s plan, it was a relief to come in today to hear that the drive toward our exit from Gediz Vallis completed successfully and that we weren’t perched on any rocks or in any other precarious position. This made for a very smooth planning morning, which is always nice on a Friday after a long week. 
      But that isn’t to say that Curiosity will be taking it easy for the weekend. Smooth planning means we have lots of time to pack in as much science as we can fit. Today, this meant that the geology group (GEO) got to name eight new targets, and the environmental group (ENV) got to spend some extra time contemplating the atmosphere. Reading through the list of target names from GEO felt a bit like reading a travel guide — top rocks to visit when you’re exiting Gediz Vallis! 
      If you look to the front of your rover, what we refer to as the “workspace” (and which you can see part of in the image above), you’ll see an array of rocks. Take in the polygonal fractures of “Colosseum Mountain” and be amazed by the structures of “Tyndall Creek” and “Cascade Valley.” Get up close and personal with our contact science targets, “Mahogany Creek,” “Forester Pass,” and “Buttress Tree.” Our workspace has something for everyone, including the laser spectrometers in the family, who will find plenty to explore with “Filly Lake” and “Crater Mountain.” We have old favorites too, like the upper Gediz Vallis Ridge and the Texoli outcrop. 
      After a busy day sightseeing, why not kick back with ENV and take a deep breath? APXS and ChemCam have you covered, watching the changing atmospheric composition. Look up with Navcam and you may see clouds drifting by, or spend some time looking for dust devils in the distance. Want to check the weather before planning your road trip? Our weather station REMS works around the clock, and Mastcam and Navcam are both keeping an eye on how dusty the crater is. 
      All good vacations must come to an end, but know that when it’s time to drive away there will be many more thrilling sights to come!
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Nov 11, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4357–4358: Turning West


      Article


      3 days ago
      2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program
      The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,…


      Article


      5 days ago
      3 min read Sols 4355-4356: Weekend Success Brings Monday Best


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      About 20,000 guests visited NASA’s tent at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024. NASA Lee esta historia en Español aquí.
      In September, the three NASA centers in California came together to share aerospace innovations with thousands of guests at the Miramar Air Show in San Diego, California. Agency experts talked about the exciting work NASA does while exploring the secrets of the universe for the benefit of all.
      Under a large tent near the airfield, guests perused exhibits from different centers and projects, like a model of the Innovator rover or the Alta-X drone, from Sept. 27 through 29. Agency employees from NASA’s Armstrong Flight Research Center in Edwards, California; Ames Research Center in Moffett Field, California; and Jet Propulsion Laboratory (JPL) in Southern California guided guests through tours and presentations and shared messages about NASA missions.
      “The airshow is about the people just as much as it is about the aircraft and technology,” said Derek Abramson, chief engineer for the Subscale Flight Research Laboratory at NASA Armstrong. “I met many new people, worked with an amazing team, and developed a comradery with other NASA centers, talking about what we do here as a cohesive organization.”
      Experts like flight controls engineer Felipe Valdez shared the NASA mission with air show guests, and explained the novelty of airborne instruments like the Alta-X drone at the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA On Sept. 29, pilots from Armstrong joined the event to take photos with guests and answer questions from curious or enthusiastic patrons. One air show guest had a special moment with NASA pilot Jim Less.
      “One of my favorite moments was connecting with a young man in his late teens who stopped by the exhibit tent numerous times, all in hopes of being able to meet Jim Less, our X-59 pilot,” said Kevin Rohrer, chief of Communications at NASA Armstrong. “It culminated with a great conversation with the two and Jim [Less] autographing a model of the X-59 aircraft the young man had been carrying around.”
      “I look forward to this tradition continuing, if not at this venue, at some other event in California,” Rohrer continued. “We have a lot of minds hungry and passionate to learn more about all of NASA missions.”
      The Miramar Air Show is an annual event that happens at the Miramar Air Base in San Diego, California.
      Professionals like Leticha Hawkinson, center right, and Haig Arakelian, center left, shared learning and career opportunities for NASA enthusiasts visiting the Miramar Air Show in San Diego, California, Sept. 27-29, 2024.NASA Share
      Details
      Last Updated Oct 30, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory What We Do Explore More
      3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 18 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aircraft Flown at Armstrong
      Armstrong People
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Aproximadamente 20,000 visitantes pasaron por la carpa de la NASA en el Espectáculo Aéreo de Miramar, celebrado en San Diego, California, entre el 27 y el 29 de septiembre de 2024.NASA Read this story in English here.
      En septiembre, los tres centros de la NASA en California se reunieron para compartir innovaciones aeroespaciales con miles de asistentes en el Espectáculo Aéreo de Miramar, en San Diego, California. Expertos de la agencia hablaron del apasionante trabajo que realiza la NASA mientras explora los secretos del universo en beneficio de todos.
      Bajo una gran carpa cerca del aeródromo, los invitados exploraron exposiciones de diferentes centros y proyectos, como una maqueta del rover Innovator o el avión no tripulado Alta-X, desde el 27 al 29 de septiembre. Empleados de la agencia provenientes del Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, del Centro de Investigación Ames en Moffett Field, California y del Laboratorio de Propulsión a Chorro (JPL por sus siglas en inglés) en el sur de California guiaron a los visitantes a través de visitas y presentaciones y compartieron mensajes sobre las misiones de la NASA.
      “El espectáculo aéreo es tanto sobre la gente como sobre las aeronaves y la tecnología”, dijo Derek Abramson, ingeniero jefe del Laboratorio de Investigación de Vuelo a Subescala de NASA Armstrong. “Conocí a mucha gente nueva, trabajé con un equipo increíble y formé un gran vínculo con otros centros de la NASA, hablando de lo que hacemos aquí como una organización cohesiva”.
      Expertos como el ingeniero de controles de vuelo Felipe Valdez compartieron la misión de la NASA con los visitantes del espectáculo aéreo y explicaron la novedad de los instrumentos aéreos como el dron Alta-X en el Espectáculo Aéreo de Miramar en San Diego, California, del 27 al 29 de septiembre de 2024.NASA El 29 de septiembre, los pilotos de Armstrong se unieron al evento para tomarse fotos con los invitados y responder a las preguntas de los curiosos o entusiastas asistentes. Un visitante del espectáculo aéreo tuvo un momento especial con el piloto de la NASA Jim Less.
      “Uno de mis momentos favoritos fue conectar con un joven en sus útimos años de adolescencia que se detuvo numerosas veces en la carpa de exhibición, con la esperanza de poder conocer a Jim Less, nuestro piloto del X-59”, dijo Kevin Rohrer, jefe de comunicaciones de NASA Armstrong. “Culminó con una gran conversación entre los dos y con Jim [Less] autografiando un modelo del avión X-59 que el joven traía consigo”.
      “Espero que esta tradición continúe, si no en este mismo lugar, en algún otro evento en California”, continuó Rohrer. “Tenemos muchas mentes hambrientas y apasionadas por aprender más sobre todas las misiones de la NASA”.
      El Espectáculo Aéreo de Miramar es un evento anual que tiene lugar en la Base Aérea de Miramar, en San Diego, California.
      Profesionales como Leticha Hawkinson, en el centro a la derecha, y Haig Arakelian, en el centro a la izquierda, compartieron oportunidades de aprendizaje y carrera para los entusiastas de la NASA que visitaron el Espectáculo Aéreo de Miramar en San Diego, California, del 27 al 29 de septiembre de 2024.NASA Articulo traducido por: Elena Aguirre
      Share
      Details
      Last Updated Oct 30, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Ames Research Center Careers Events Jet Propulsion Laboratory NASA en español What We Do Explore More
      2 min read NASA Brings Drone and Space Rover to Air Show
      Article 17 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago 10 min read Ken Iliff: Engineering 40 Years of Success
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aircraft Flown at Armstrong
      Armstrong People
      Armstrong Capabilities & Facilities
      View the full article
  • Check out these Videos

×
×
  • Create New...