Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The legend of the 13 crystal skulls is one of mystery, intrigue, and ancient wisdom. According to myth, these skulls hold the complete knowledge of our galaxy and the history of the human race. Twelve are said to represent different worlds where intelligent life once thrived, while the thirteenth serves as the key that unites them all. 

      One of the most famous crystal skulls, the Mitchell-Hedges Skull, was discovered in 1927 by archaeologist F.A. Mitchell-Hedges during an excavation at an ancient Mayan site in the dense jungles of Yucatán. This artifact defied conventional understanding of physics and engineering, astonishing scientists at Hewlett-Packard's crystal laboratory, who had never encountered anything like it. 
      Other crystal skulls have been found across Central and South America, Mexico, and beyond. Both the Maya and Aztecs are believed to have used them in sacred rituals and ceremonies. Additionally, various Native American tribes and indigenous cultures worldwide have passed down similar stories, linking these artifacts to ancient Atlantean and Lemurian civilizations. 
      Crystals can transfer, retain, and amplify energy, focusing and transmitting it over great distances to similar crystals. They also have the capacity to store vast amounts of data and knowledge, much like a computer, and can even be used for communication. Could it be, then, that these crystal skulls possess the same mysterious power as the crystal 'Atlantis' sphere discovered by Ray Brown in the submerged ruins of an ancient temple near Bimini? 
      Now, the crystal skulls story spans from ancient Mars to modern-day laboratories, weaving through lost civilizations and CIA psychic programs. As scientists unravel the truth behind these mysterious artifacts, they discover something even more fascinating about the potential of crystal technology.
        View the full article
    • By European Space Agency
      Launched just two months ago and still in the process of being commissioned for service, the Copernicus Sentinel-1C satellite is, remarkably, already showing how its radar data can be used to map the shape of Earth’s land surface with extreme precision.
      These first cross-satellite ‘interferometry’ results assure its ability to monitor subsidence, uplift, glacier flow, and disasters such as landslides and earthquakes.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrated the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Credit: Lockheed Martin/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. The engine, a modified F414-GE-100 that powers the aircraft’s flight and integrated subsystems, performed to expectations during three increasingly complicated tests that ran from October through January at contractor Lockheed Martin’s Skunk Works facility in Palmdale, California.
      “We have successfully progressed through our engine ground tests as we planned,” said Raymond Castner, X-59 propulsion lead at NASA’s Glenn Research Center in Cleveland. “We had no major showstoppers. We were getting smooth and steady airflow as predicted from wind tunnel testing. We didn’t have any structural or excessive vibration issues. And parts of the engine and aircraft that needed cooling were getting it.”
      The tests began with seeing how the aircraft’s hydraulics, electrical, and environmental control systems performed when the engine was powered up but idling. The team then performed throttle checks, bringing the aircraft up to full power and firing its afterburner – an engine component that generates additional thrust – to maximum.
      In preparation for the X-59’s planned first flight this year, NASA and Lockheed Martin successfully completed the aircraft’s engine run tests in January. Testing included electrical, hydraulics, and environmental control systems.
      Credit: NASA/Lillianne Hammel  A third test, throttle snaps, involved moving the throttle swiftly back and forth to validate that the engine responds instantly. The engine produces as much as 22,000 pounds of thrust to achieve a desired cruising speed of Mach 1.4 (925 miles per hour) at an altitude of approximately 55,000 feet.
      The X-59’s engine, similar to those aboard the U.S. Navy’s F-18 Super Hornet, is mounted on top of the aircraft to reduce the level of noise reaching the ground. Many features of the X-59, including its 38-foot-long nose, are designed to lower the noise of a sonic boom to that of a mere “thump,” similar to the sound of a car door slamming nearby.
      Next steps before first flight will include evaluating the X-59 for potential electromagnetic interference effects, as well as “aluminum bird” testing, during which data will be fed to the aircraft under both normal and failure conditions. A series of taxi tests and other preparations will also take place before the first flight.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
      Explore More
      3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
      Article 6 hours ago 2 min read Wind Over Its Wing: NASA’s X-66 Model Tests Airflow
      Article 6 days ago 9 min read Combustor Facilities
      Article 1 week ago

      View the full article
    • By European Space Agency
      Video: 00:00:40 Back in 2023, we reported on Solar Orbiter’s discovery of tiny jets near the Sun’s south pole that could be powering the solar wind. The team behind this research has now used even more data from the European Space Agency’s prolific solar mission to confirm that these jets exist all over dark patches in the Sun’s atmosphere, and that they really are a source of not only fast but also slow solar wind.
      The newfound jets can be seen in this sped-up video as hair-like wisps that flash very briefly, for example within the circled regions of the Sun's surface. In reality they last around one minute and fling out charged particles at about 100 km/s.
      The surprising result is published today in Astronomy & Astrophysics, highlighting how Solar Orbiter’s unique combination of instruments can unveil the mysteries of the star at the centre of our Solar System.
      The solar wind is the never-ending rain of electrically charged particles given out by the Sun. It pervades the Solar System and its effects can be felt on Earth. Yet despite decades of study, its origin remained poorly understood. Until now.
      The solar wind comes in two main forms: fast and slow. We have known for decades that the fast solar wind comes from the direction of dark patches in the Sun’s atmosphere called coronal holes – regions where the Sun’s magnetic field does not turn back down into the Sun but rather stretches deep into the Solar System.
      Charged particles can flow along these ‘open’ magnetic field lines, heading away from the Sun, and creating the solar wind. But a big question remained: how do these particles get launched from the Sun in the first place?
      Building upon their previous discovery, the research team (led by Lakshmi Pradeep Chitta at the Max Planck Institute for Solar System Research, Germany) used Solar Orbiter’s onboard ‘cameras’ to spot more tiny jets within coronal holes close to the Sun’s equator.
      By combining these high-resolution images with direct measurements of solar wind particles and the Sun’s magnetic field around Solar Orbiter, the researchers could directly connect the solar wind measured at the spacecraft back to those exact same jets.
      What’s more, the team was surprised to find not just fast solar wind coming from these jets, but also slow solar wind. This is the first time that we can say for sure that at least some of the slow solar wind also comes from tiny jets in coronal holes – until now, the origin of the solar wind had been elusive.
      The fact that the same underlying process drives both fast and slow solar wind comes as a surprise. The discovery is only possible thanks to Solar Orbiter’s unique combination of advanced imaging systems, as well as its instruments that can directly detect particles and magnetic fields.
      The measurements were taken when Solar Orbiter made close approaches to the Sun in October 2022 and April 2023. These close approaches happen roughly twice a year; during the next ones, the researchers hope to collect more data to better understand how these tiny jets ‘launch’ the solar wind.
      Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. This research used data from Solar Orbiter’s Extreme Ultraviolet Imager (EUI), Polarimetric and Helioseismic Imager (PHI), Solar Wind Plasma Analyser (SWA) and Magnetometer (MAG). Find out more about the instruments Solar Orbiter is using to reveal more about the Sun.
      Read our news story from 2023 about how Solar Orbiter discovered tiny jets that could power the solar wind
      Read more about how Solar Orbiter can trace the solar wind back to its source region on the Sun
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Beholding Black Hole Power with the Accretion Explorer Interferometer concept.NASA/Kimberly Weaver Kimberly Weaver
      NASA Goddard Space Flight Center
      Some of the most enigmatic objects in the Universe are giant supermassive black holes (SMBH). Yet after 30 years of study, we don’t know precisely how these objects produce their power. This requires observations at X-ray wavelengths. The state-of-the-art for X-ray images is Chandra (~0.5-1 arcsecond resolution) but this is insufficient to image regions near SMBH where the most energetic behavior occurs. The Accretion Explorer (AE) is a mission architecture that will shatter new ground by creating X-ray images at scientifically crucial energies of 0.7-1.2 keV, 1.5-2.5 keV, 6-7 keV, up to 6 orders of magnitude better than Chandra, and will offer imaging at 4-5 orders of magnitude better than JWST (IR) and HST(optical/UV). The specific X-ray energy bands we are proposing to cover contain vital X-ray line signatures that can distinguish between SMBH activity and stellar processes. The AE NIAC concept would be a game changer for NASA and astrophysics. X-ray interferometry will challenge and change the conversation around future mission possibilities for NASA’s flagships. It will also influence the Astrophysics 2030 Decadal Survey and will significantly contribute to our scientific knowledge base in astrophysics and other fields. AE has tremendous potential to generate enthusiasm for future missions and the potential to build advocacy to support it within NASA, society, and the aerospace community.
      Alternative approaches to ultra high-resolution X-ray imaging technology are not currently being funded. Our study will focus on a large free-flying X-ray interferometer. We will design a multiple spacecraft system that provides the architecture to align individual mirror pair baseline groupings provided by individual collector spacecraft, with the pointing precision to achieve micro-arcsecond resolution. Our study will assess the required pointing stability and determine optimal ways to nest and mount the collecting mirror flats within mirror modules. We will assess the required size for the detector array(s) to accommodate the wavelength coverage for detecting fringes, study how images will be created from fringes, and produce a simulated image from a design with accompanying optical element tolerance tables. We will document alternative approaches, how new factors substantially differentiate AE from prior efforts for X-ray interferometry, and identify technical hurdles.
      As a result of performing this study, there are notable engineering benefits that can contribute to space missions, even if the concept is shown to be infeasible. These include establishing how small baseline interferometers can be flown with less risk in terms of spacing and tethering mirror modules, studies of very high levels of pointing precision for space-based interferometers, and extreme stability on target. Producing a simulated image from this design with accompanying tolerance tables can inform other space-based interferometry designs.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NASA Innovative Advanced Concepts (NIAC) Program NIAC Studies Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...