Members Can Post Anonymously On This Site
NASA to Air VP Harris’ First National Space Council Meeting
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Aaron Yazzie’s dream of being part of humanity’s exploration of space took him on a journey from his childhood home on the Navajo Nation to working at NASA’s Jet Propulsion Laboratory (JPL) in Southern California. His journey reflects not only his personal ambition, but also a commitment to elevating Indigenous representation in science, technology, engineering, and mathematics (STEM) fields.
“Getting an internship at NASA was the culmination of a lot of work done by myself, and many of the Indigenous trailblazers that came before me, to make a path and a space for Indigenous peoples at places where there might not have been any Indigenous Peoples in any rooms,” said Yazzie.
Born in Tuba City, Arizona, Yazzie is of the Salt Clan and born for the Bitter Water Clan, which reflect his maternal and paternal lineage, respectively. The Navajo clan system communicates family heritage and where their families come from.
Yazzie’s path to NASA began with a passion for engineering, which he pursued at Stanford University in Stanford, California, where he earned a bachelor’s degree in mechanical engineering in 2008. NASA is a dream job for many, from artists to engineers, and Yazzie was no exception. Securing an internship at NASA’s Jet Propulsion Laboratory in 2008 marked a significant milestone for him, particularly as an Indigenous person in STEM where Indigenous people are underrepresented. Throughout his academic and professional journey, he frequently found himself as the only Indigenous voice in the room with Indigenous people representing less than 0.6% of the American STEM workforce.
Yazzie’s work at NASA is deeply intertwined with his cultural identity. In the Navajo culture, traditional stories tell how the Diné (the people) came to exist in Dinétah (Navajo homelands).
Yazzie’s contributions to missions exploring Mars, including testing the Curiosity Rover’s sample acquisition system and developing drill bits for the Perseverance Rover, resonate with the Navajo creation story, which emphasizes nurturing life on a developing Earth—paralleling his efforts to support the possibility of life on Mars. He approaches his role with a sense of purpose, reflecting on the importance of understanding origins–both of the Earth and of life itself.
“By studying Mars, we learn about how rocky, terrestrial planets, like Mars and Earth, formed over billions of years,” said Yazzie, “And by searching for ancient microbial life on Mars, we might learn how life on Earth originated. I am proud to be doing what my ancestors have been doing before me.”
Emphasizing a commitment to lifelong learning, Yazzie advises future interns to “embrace the opportunities of growth and learning that come with working at NASA.” His advice: learn how to be a good learner. Yazzie’s diverse responsibilities, from test engineer to systems engineer, keep him engaged and continuously evolving.
“I think I am most proud of the outreach work I have been able to do, especially to Indigenous communities,” said Yazzie, “I want to help Indigenous students understand that they can exist and thrive at places like NASA.”
Yazzie’s work has been recognized with awards from NASA JPL, Stanford University, and his own tribe, reinforcing his role as a trailblazer for generations. As he continues to contribute to humanity’s understanding of Mars and its potential for past life, he honors his ancestors by paving the way for a more inclusive future in space exploration. Through his work, Yazzie inspires a new generation of Diné scientists and engineers, proving their voices have an essential place in the story of the cosmos.
Like Yazzie, NASA is devoted to mentoring the next generation of Indigenous doers, thinkers, and innovators. Anyone interested in following his footsteps may consider applying for a NASA Internship. Outside of internships NASA offers numerous routes to help Indigenous students get involved with STEM. Additionally, through NASA’s Minority University Research and Education Project (MUREP), the agency provides financial assistance via competitive awards to Minority Serving Institutions. The MUREP American Indian and Alaska Native STEM Engagement (MAIANSE) program offers funding dedicated to supporting Indigenous students launch their careers at NASA.
Want to learn more about interns at NASA? Read More View the full article
-
By NASA
The Thanksgiving holiday typically brings families and friends together in a celebration of common gratitude for all the good things that have happened during the previous year. People celebrate the holiday in various ways, with parades, football marathons, and attending services, but food remains the over-arching theme. For astronauts embarked on long-duration space missions, separation from family and friends is inevitable and they rely on fellow crew members to share in the tradition and enjoy the culinary traditions as much as possible.
Over the past decades, astronauts have celebrated the holiday during their time in space in a variety of unique ways. Enjoy the stories and photographs from orbital Thanksgiving celebrations over the years.
Skylab 4 astronauts Edward G. Gibson, left, William R. Pogue, and Gerald P. Carr demonstrate eating aboard Skylab during Thanksgiving in 1973. NASA Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue hold the distinction as the first crew to celebrate Thanksgiving in space on Nov. 22, 1973. On that day, their seventh of an 84-day mission, Gibson and Pogue completed a 6-hour and 33-minute spacewalk, while Carr remained in the Multiple Docking Adapter, with no access to food. All three made up for missing lunch by consuming two meals at dinner time, although neither included special items for Thanksgiving.
Twelve years passed before the next orbital Thanksgiving celebration. On Nov. 28, 1985, the seven-member crew of STS-61B, NASA astronauts Brewster H. Shaw, Bryan D. O’Connor, Jerry L. Ross, Mary L. Cleave, and Sherwood C. “Woody” Spring, and payload specialists Charles D. Walker from the United States and Rodolfo Neri Vela from Mexico, feasted on shrimp cocktail, irradiated turkey, and cranberry sauce aboard the space shuttle Atlantis.
STS-80 astronauts Tamara E. Jernigan, left, Kent V. Rominger, and Thomas D. Jones enjoy Thanksgiving dinner in Columbia’s middeck in 1996.NASA Neri Vela introduced tortillas to space menus, and they have remained favorites among astronauts ever since. Unlike regular bread, tortillas do not create crumbs, a potential hazard in weightlessness, and have multiple uses for any meal of the day. The crew of STS-33, NASA astronauts Frederick D. Gregory, John E. Blaha, Manley L. “Sonny” Carter, F. Story Musgrave, and Kathryn C. Thornton, celebrated Thanksgiving aboard space shuttle Discovery in 1989. Gregory and Musgrave celebrated their second Thanksgiving in space two years later, joined by fellow STS-44 NASA astronauts Terrence T. “Tom” Henricks, James S. Voss, Mario Runco, and Thomas J. Hennen aboard space shuttle Atlantis.
In 1996, Blaha celebrated his second Thanksgiving in space with Russian cosmonauts Valeri G. Korzun and Aleksandr Y. Kaleri aboard the space station Mir. Blaha watched the beautiful Earth through the Mir windows rather than his usual viewing fare of football. The STS-80 crew of NASA astronauts Kenneth D. Cockrell, Kent V. Rominger, Tamara E. Jernigan, Thomas D. Jones, and Musgrave, now on his third turkey day holiday in orbit, celebrated Thanksgiving aboard space shuttle Columbia. Although the eight crew members worked in different spacecraft in different orbits, they exchanged holiday greetings via space-to-space radio. This marked the largest number of people in space on Thanksgiving Day up to that time.
One year later, NASA astronaut David A. Wolf celebrated Thanksgiving with his Russian crewmates Anatoli Y. Solovev, who translated the holiday into Russian as den blagodarenia, and Pavel V. Vinogradov aboard Mir. They enjoyed smoked turkey, freeze-dried mashed potatoes, peas, and milk. Also in orbit at the time was the crew of STS-87, NASA astronauts Kevin R. Kregel, Steven W. Lindsey, Kalpana Chawla, and Winston E. Scott, Takao Doi of the Japan Aerospace Exploration Agency, and Leonid K. Kadenyuk of Ukraine, aboard Columbia. The nine crew members aboard the two spacecraft broke the one-year-old record for the largest number of people in space at one time for Thanksgiving, also setting the record for the most nations represented, four.
NASA astronaut Frank L. Culbertson, left, and Vladimir N. Dezhurov of Roscosmos enjoy Thanksgiving dinner aboard the International Space Station in 2001.NASA The Expedition 1 crew of NASA astronaut William M. Shepherd, and Yuri P. Gidzenko and Sergei K. Krikalev of Roscosmos celebrated the first Thanksgiving aboard the International Space Station on Nov. 23, 2000, three weeks after their arrival aboard the facility. The crew took time out of their busy schedule to enjoy ham and smoked turkey and send words of thanks to people on the ground who provided excellent support to their flight. Crews have celebrated Thanksgiving in space every November since then.
In 2001, Expedition 3 crew members NASA astronaut Frank L. Culbertson, and Vladimir N. Dezhurov and Mikhail V. Tyurin of Roscosmos enjoyed the first real Thanksgiving aboard the space station, complete with a cardboard turkey as decoration. The following year’s orbital Thanksgiving celebration included the largest number of people to that time, the combined 10 crewmembers of Expedition 5, STS-113, and Expedition 6. After a busy day that included the first Thanksgiving Day spacewalk from the space station, the crews settled down to a dinner of smoked turkey, mashed potatoes, and green beans with mushrooms. Blueberry-cherry cobbler rounded out the meal.
The crews of Expeditions 18 and STS-126 share a Thanksgiving meal in the space shuttle middeck in 2008. NASA Expedition 18 crew members NASA astronauts E. Michael Fincke and Gregory E. Chamitoff and Yuri V. Lonchakov representing Roscosmos, welcomed the STS-126 crew of NASA astronauts Christopher J. Ferguson, Eric A. Boe, Heidemarie M. Stefanyshyn-Piper, Donald R. Pettit, Stephen G. Bowen, R. Shane Kimbrough, and Sandra H. Magnus during Thanksgiving in 2008. They dined in the space shuttle Endeavour’s middeck on smoked turkey, candied yams, green beans and mushrooms, cornbread dressing and a cranapple dessert.
The following year saw the largest and an internationally diverse group celebrating Thanksgiving in space. The six Expedition 21 crew members, NASA astronauts Jeffrey N. Williams and Nicole P. Stott, Roman Y. Romanenko and Maksim V. Suraev of Roscosmos, Frank L. DeWinne of the European Space Agency, and Robert B. Thirsk of the Canadian Space Agency hosted the six members of the STS-129 crew, NASA astronauts Charles O. Hobaugh, Barry E. Wilmore, Michael J. Foreman, Robert L. Satcher, Randolph J. Bresnik, and Leland D. Melvin. The twelve assembled crew members represented the United States, Russia, Belgium, and Canada. The celebration took place two days early, since the shuttle undocked from the space station on Thanksgiving Day.
We hope you enjoyed these stories and photographs from Thanksgivings celebrated in space. We would like to wish everyone here on the ground and the seven-member crew of Expedition 72 aboard the space station a very Happy Thanksgiving! For NASA astronauts Barry “Butch” E. Wilmore and Donald R. Pettit, this will mark the third time they celebrate the holiday in space.
Expedition 42 crew members enjoy Thanksgiving dinner aboard the space station in 2014.NASA Expedition 45 crew members gather at the Thanksgiving dinner table aboard the orbital outpost in 2015. NASA Expedition 50 crew members at the Thanksgiving dinner table aboard the orbiting laboratory in 2016. NASA The Expedition 53 crew awaits the start of Thanksgiving dinner aboard the space station in 2017.NASA Expedition 66 crew members enjoy a Thanksgiving feast in 2021.NASA Expedition 70 crew members Andreas E. Mogensen, of the European Space Agency, front left, NASA astronauts Loral A. O’Hara and Jasmin Moghbeli, and Satoshi Furukawa of the Japan Aerospace Exploration Agency beam down their Thanksgiving message to everyone on the ground in 2023. The astronauts presented their favorite Thanksgiving space food items.NASA View the full article
-
By NASA
NASA Lewis Research Center’s DC-9 commences one of its microgravity-producing parabolas in the fall of 1994. It was the center’s largest aircraft since the B-29 Superfortress in the 1940s.Credit: NASA/Quentin Schwinn
A bell rings and a strobe light flashes as a pilot pulls the nose of the DC-9 aircraft up sharply. The blood quickly drains from researchers’ heads as they are pulled to the cabin floor by a force twice that of normal gravity. Once the acceleration slows to the desired level, and the NASA aircraft crests over its arc, the flight test director declares, “We’re over the top!”
The pressure drops as the aircraft plummets forward in freefall. For the next 20 to 25 seconds, everybody and everything not tied down begins to float. The researchers quickly tend to their experiments before the bell rings again as the pilot brings the aircraft back to level flight and normal Earth gravity.
By flying in a series of up-and-down parabolas, aircraft can simulate weightlessness. Flights like this in the DC-9, conducted by NASA’s Lewis Research Center (today, NASA Glenn) in the 1990s, provided scientists with a unique way to study the behavior of fluids, combustion, and materials in a microgravity environment.
Researchers conduct experiments in simulated weightlessness during a flight aboard the DC-9. The aircraft sometimes flew up to 40 parabolas in a single mission.Credit: NASA/Quentin Schwinn Beginnings
In the 1960s, NASA Lewis used a North American AJ-2 to fly parabolas to study the behavior of liquid propellants in low-gravity conditions. The center subsequently expanded its microgravity research to include combustion and materials testing.
So, when the introduction of the space shuttle in the early 1980s led to an increase in microgravity research, NASA Lewis was poised to be a leader in the agency’s microgravity science efforts. To help scientists test experiments on Earth before they flew for extended durations on the shuttle, Lewis engineers modified a Learjet aircraft to fly microgravity test flights with a single strapped-down experiment and researcher.
The DC-9 flight crew in May 1996. Each flight required two pilots, a flight engineer, and test directors. The flight crews participated in pre- and post-flight mission briefings and contributed to program planning, cost analysis, and the writing of technical reports.Credit: NASA/Quentin Schwinn Bigger And Better
In 1990, NASA officials decided that Lewis needed a larger aircraft to accommodate more experiments, including free-floating tests. Officials determined the McDonnell Douglas DC-9 would be the most economical option and decided to assume responsibility for a DC-9 being leased by the U.S. Department of Energy.
In the fall of 1993, 50 potential users of the aircraft visited the center to discuss the modifications that would be necessary to perform their research. In October 1994, the DC-9 arrived at Lewis in its normal passenger configuration. Over the next three months, Lewis technicians removed nearly all the seats; bolstered the floor and ceiling; and installed new power, communications, and guidance systems. A 6.5-by-11-foot cargo door was also installed to allow for the transfer of large equipment.
The DC-9 was the final element making NASA Lewis the nation’s premier microgravity institution. The center’s Space Experiments Division had been recently expanded, the 2.2-Second Drop Tower and the Zero Gravity Facility had been upgraded, and the Space Experiments Laboratory had recently been constructed to centralize microgravity activities.
NASA Lewis researchers aboard the DC-9 train the STS-83 astronauts on experiments for the Microgravity Science Laboratory (MSL-1).Credit: NASA/Quentin Schwinn Conducting the Flights
Lewis researchers partnered with industry and universities to design and test experiments that could fly on the space shuttle or the future space station. The DC-9 could accommodate up to eight experiments and 20 research personnel on each flight.
The experiments involved space acceleration measurements, capillary pump loops, bubble behavior, thin film liquid rupture, materials flammability, and flame spread. It was a highly interactive experience, with researchers accompanying their tests to gain additional information through direct observation. The researchers were often so focused on their work that they hardly noticed the levitation of their bodies.
The DC-9 flew every other week to allow time for installation of experiments and aircraft maintenance. The flights, which were based out of Cleveland Hopkins International Airport, were flown in restricted air space over northern Michigan. The aircraft sometimes flew up to 40 parabolas in a single mission.
Seth Lichter, professor at Northwestern University, conducts a thin film rupture experiment aboard the DC-9 in April 1997.Credit: NASA/Quentin Schwinn A Lasting Legacy
When the aircraft’s lease expired in the late 1990s, NASA returned the DC-9 to its owner. From May 18, 1995, to July 11, 1997, the Lewis microgravity flight team had used the DC-9 to fly over 400 hours, perform 70-plus trajectories, and conduct 73 research projects, helping scientists conduct hands-on microgravity research on Earth as well as test and prepare experiments designed to fly in space. The aircraft served as a unique and important tool, overall contributing to the body of knowledge around microgravity science and the center’s expertise in this research area.
NASA Glenn’s microgravity work continues. The center has supported experiments on the International Space Station that could improve crew health as well as spacecraft fire safety, propulsion, and propellants. Glenn is also home to two microgravity drop towers, including the Zero Gravity Research Facility, NASA’s premier ground-based microgravity research lab.
Additional Resources:
Learn more about why NASA researchers simulate microgravity Take a virtual tour of NASA Glenn’s Zero Gravity Research Facility Discover more about Glenn’s expertise in space technology Explore More
6 min read Art Meets Exploration: Cosmic Connections in Galveston
Article 1 day ago 3 min read Emerging Engineering Leader Basil Baldauff Emphasizes Osage Values
Article 1 day ago 6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
Article 2 days ago View the full article
-
By European Space Agency
The SubOrbital Express-4 sounding rocket was successfully launched from the Esrange Space Center outside Kiruna, in the north of Sweden, at 06:00 CET yesterday morning.
View the full article
-
By NASA
NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Johns Hopkins University’s Applied Physics Laboratory of Laurel, Maryland, to build the Suprathermal Ion Sensors for the Lagrange 1 Series project, part of NOAA’s Space Weather Next Program.
This cost-plus-fixed-fee contract is valued at approximately $20.5 million and includes the development of two Suprathermal Ion Sensor instruments. The anticipated period of performance for this contract will run through Jan. 31, 2034. The work will take place at the awardee’s facility in Maryland, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Kennedy Space Center in Florida.
The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the Suprathermal Ion Sensor instruments, launch support, supply and maintenance of ground support equipment, and support of post-launch mission operations at the NOAA Satellite Operations Facility.
The Suprathermal Ion Sensors will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
The instruments will measure suprathermal ions and electrons across a broad range of energies, and will provide real-time, continuous observations to ensure early warning of various space weather impacts. They also will monitor ions to characterize solar ejections including coronal mass ejections, co-rotating interaction regions, and interplanetary shocks. Analysis of these spectra aids in estimating the arrival time and strength of solar wind shocks.
NASA and NOAA oversee the development, launch, testing, and operation of all the satellites in the L1 Series project. NOAA is the program owner that provides funds and manages the program, operations, and data products and dissemination to users. NASA and commercial partners develop, build, and launch the instruments and spacecraft on behalf of NOAA.
For information about NASA and agency programs, please visit:
https://www.nasa.gov
-end-
Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Md.
757-824-2958
jeremy.l.eggers@nasa.gov
Share
Details
Last Updated Nov 26, 2024 EditorRob GarnerContactJeremy EggersLocationGoddard Space Flight Center Related Terms
NOAA (National Oceanic and Atmospheric Administration) Goddard Space Flight Center Heliophysics Heliophysics Division View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.