Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Danah Tommalieh, commercial pilot and engineer at Reliable Robotics, inputs a flight plan at the control center in Mountain View, California, ahead of remotely operating a Cessna 208 aircraft at Hollister municipal airport in Hollister, California.NASA/Don Richey NASA recently began a series of flight tests with partners to answer an important aviation question: What will it take to integrate remotely piloted or autonomous planes carrying large packages and cargo safely into the U.S. airspace? Researchers tested new technologies in Hollister, California, that are helping to investigate what tools and capabilities are needed to make these kinds of flights routine.  
      The commercial industry continues to make advancements in autonomous aircraft systems aimed at making it possible for remotely operated aircraft to fly over communities – transforming the way we will transport people and goods. As the Federal Aviation Administration (FAA) develops standards for this new type of air transportation, NASA is working to ensure these uncrewed flights are safe by creating the required technological tools and infrastructure. These solutions could be scaled to support many different remotely piloted aircraft – including air taxis and package delivery drones – in a shared airspace with traditional crewed aircraft. 
      “Remotely piloted aircraft systems could eventually deliver cargo and people to rural areas with limited access to commercial transportation and delivery services,” said Shivanjli Sharma, aerospace engineer at NASA’s Ames Research Center in California’s Silicon Valley. “We’re aiming to create a healthy ecosystem of many different kinds of remotely piloted operations. They will fly in a shared airspace to provide communities with better access to goods and services, like medical supply deliveries and more efficient transportation.”  
      During a flight test in November, Reliable Robotics, a company developing an autonomous flight system, remotely flew its Cessna 208 Caravan aircraft through pre-approved flight paths in Hollister, California. 
      Although a safety pilot was aboard, a Reliable Robotics remote pilot directed the flight from their control center in Mountain View, more than 50 miles away.
      Cockpit of Reliable Robotics’ Cessna 208 aircraft outfitted with autonomous technology for remotely-piloted operations.NASA/Brandon Torres Navarrete Congressional staffers from the United States House and Senate’s California delegation joined NASA Deputy Associate Administrator for Aeronautics Research Mission Directorate, Carol Caroll, Ames Aeronautics Director, Huy Tran, and other Ames leadership at Reliable Robotics Headquarters to view the live remote flight.
      Researchers evaluated a Collins Aerospace ground-based surveillance system’s ability to detect nearby air traffic and provide the remote pilot with information in order to stay safely separated from other aircraft in the future. 
      Initial analysis shows the ground-based radar actively surveilled the airspace during the aircraft’s taxi, takeoff, and landing. The data was transmitted from the radar system to the remote pilot at Reliable Robotics. In the future, this capability could help ensure aircraft remain safely separated across all phases of fight.   
      A Reliable Robotics’ modified Cessna 208 aircraft flies near Hollister Airport. A Reliable Robotics pilot operated the aircraft remotely from the control center in Mountain View.NASA/Brandon Torres Naverrete While current FAA operating rules require pilots to physically see and avoid other aircraft from inside the cockpit, routine remotely piloted aircraft will require a suite of integrated technologies to avoid hazards and coordinate with other aircraft in the airspace.  
      A radar system for ground-based surveillance offers one method for detecting other traffic in the airspace and at the airport, providing one part of the capability to ensure pilots can avoid collision and accomplish their desired missions. Data analysis from this testing will help researchers understand if ground-based surveillance radar can be used to satisfy FAA safety rules for remotely piloted flights. 
      NASA will provide analysis and reports of this flight test to the FAA and standards bodies. 
      “This is an exciting time for the remotely piloted aviation community,” Sharma said. “Among other benefits, remote operations could provide better access to healthcare, bolster natural disaster response efforts, and offer more sustainable and effective transportation to both rural and urban communities. We’re thrilled to provide valuable data to the industry and the FAA to help make remote operations a reality in the near future.”  
      Over the next year, NASA will work with additional aviation partners on test flights and simulations to test weather services, communications systems, and other autonomous capabilities for remotely piloted flights. NASA researchers will analyze data from these tests to provide a comprehensive report to the FAA and the community on what minimum technologies and capabilities are needed to enable and scale remotely piloted operations. 
      This flight test data analysis is led out of NASA Ames under the agency’s Air Traffic Management Exploration project. This effort supports the agency’s Advanced Air Mobility mission research, ensuring the United States stays at the forefront of aviation innovation. 
      Share
      Details
      Last Updated Jan 07, 2025 Related Terms
      Ames Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Airspace Operations and Safety Program Drones & You Explore More
      3 min read How a NASA Senior Database Administrator Manifested her Dream Job
      Article 2 weeks ago 16 min read NASA Ames Astrogram – December 2024
      Article 3 weeks ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Northrop Grumman & NASA Digital Engineering SAA Kick-off meeting at Thompson Space Innovation Center.  NASA’s Digital Engineering is paving the way for exciting new possibilities. Their latest Space Act Agreement with Northrop Grumman promises to accelerate progress in space exploration through innovative collaboration.
      Under NASA’s HQ Office of the Chief Engineer, Terry Hill the Digital Engineering Program Manager, recently signed a Space Act Agreement with Northrop Grumman Space Sector to explore digital engineering approaches to sharing information between industry partners and NASA. This collaboration aims to support NASA’s mission by advancing engineering practices to reduce the time from concept to flight. By leveraging digital engineering tools, this collaboration could lead to improved design, testing, and simulation processes, It could also help improve how the government and industry write contracts, making it easier and more efficient for them to share information. This would help both sides work together better, handle more complicated missions, and speed up the development of new space technologies.
      This collaboration between NASA and Northrop Grumman brings exciting possibilities for the future of space exploration. By embracing digital engineering, both organizations are working toward more efficient, cost-effective missions and solutions to greater challenges. Beyond accelerating mission timelines, the insights and technologies developed through this collaboration could pave the way for groundbreaking advancements in space capabilities.
      View the full article
    • By NASA
      Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. The large cargo landers will have the capability to land approximately 26,000 to 33,000 pounds (12-15 metric tons) of large, heavy payload on the lunar surface. Credit: SpaceX/Blue Origin NASA, along with its industry and international partners, is preparing for sustained exploration of the lunar surface with the Artemis campaign to advance science and discovery for the benefit of all. As part of that effort, NASA intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver large pieces of equipment and infrastructure to the lunar surface.
      NASA expects to assign demonstration missions to current human landing system providers, SpaceX and Blue Origin, to mature designs of their large cargo landers following successful design certification reviews. The assignment of these missions builds on the 2023 request by NASA for the two companies to develop cargo versions of their crewed human landing systems, now in development for Artemis III, Artemis IV, and Artemis V.
      “NASA is planning for both crewed missions and future services missions to the Moon beyond Artemis V,” said Stephen D. Creech, assistant deputy associate administrator for technical, Moon to Mars Program Office. “The Artemis campaign is a collaborative effort with international and industry partners. Having two lunar lander providers with different approaches for crew and cargo landing capability provides mission flexibility while ensuring a regular cadence of Moon landings for continued discovery and scientific opportunity.”
      NASA plans for at least two delivery missions with large cargo. The agency intends for SpaceX’s Starship cargo lander to deliver a pressurized rover, currently in development by JAXA (Japan Aerospace Exploration Agency), to the lunar surface no earlier than fiscal year 2032 in support of Artemis VII and later missions. The agency expects Blue Origin to deliver a lunar surface habitat no earlier than fiscal year 2033.
      “Based on current design and development progress for both crew and cargo landers and the Artemis mission schedules for the crew lander versions, NASA assigned a pressurized rover mission for SpaceX and a lunar habitat delivery for Blue Origin,” said Lisa Watson-Morgan, program manager, Human Landing System, at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These large cargo lander demonstration missions aim to optimize our NASA and industry technical expertise, resources, and funding as we prepare for the future of deep space exploration.”
      SpaceX will continue cargo lander development and prepare for the Starship cargo mission under Option B of the NextSTEP Appendix H contract. Blue Origin will conduct its cargo lander work and demonstration mission under NextSTEP Appendix P. NASA expects to issue an initial request for proposals to both companies in early 2025.
      With the Artemis campaign, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with commercial human landing systems, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on NASA’s Human Landing System Program, visit:
      https://www.nasa.gov/hls
      -end-
      James Gannon
      Headquarters, Washington
      202-358-1600
      james.h.gannon@nasa.gov
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Nov 19, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Human Landing System Program Artemis Exploration Systems Development Mission Directorate Marshall Space Flight Center View the full article
    • By NASA
      Northrop Grumman’s Cygnus spacecraft for the company’s 21st commercial resupply services mission for NASA launched on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.Credit: NASA Following a successful launch of NASA’s Northrop Grumman 21st commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.
      Northrop Grumman’s Cygnus spacecraft, carrying more than 8,200 pounds of supplies to the orbiting laboratory, lifted off at 11:02 a.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Shortly after launch, the spacecraft missed its first burn due to a late entry to burn sequencing. Known as the targeted altitude burn, or TB1, it was rescheduled, but aborted shortly after the engine ignited due to a slightly low initial pressure state. There is no indication the engine itself has any problem at this time.
      Cygnus is at a safe altitude and completed the deployment of its two solar arrays at 2:21 p.m. Northrop Grumman engineers are working a new burn and trajectory plan and aim to achieve the spacecraft’s original capture time on station.
      If all remains on track, live coverage of the spacecraft’s arrival will begin at 1:30 a.m., Tuesday, Aug. 6, on NASA+, NASA Television, the NASA app, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.
      NASA astronaut Matthew Dominick will capture Cygnus using the station’s robotic arm at approximately 3:10 a.m., and NASA astronaut Jeanette Epps is backup.
      The resupply mission will support dozens of research experiments conducted during Expedition 71. Included among the investigations are:
      Test articles to evaluate liquid and gas flow through porous media found in space station life support systems A balloon, penny, and hexnut for a new STEMonstration on centripetal force Microorganisms known as Rotifers to examine the effects of spaceflight on DNA repair mechanisms A bioreactor to demonstrate the production of many high-quality blood and immune stem cells These are just a sample of the hundreds of investigations conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Such research benefits humanity and lays the groundwork for future human exploration through the agency’s Artemis campaign, which will send astronauts to the Moon to prepare for future expeditions to Mars.
      NASA’s arrival and in-flight event coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, Aug. 6
      1:30 a.m. – Arrival coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
      3:10 a.m. – Capture of Cygnus with the space station’s robotic arm.
      4:30 a.m. – Cygnus installation coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
      All times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date operations information.
      The company’s 21st mission to the space station for NASA is the 10th under its Commercial Resupply Services 2 contract.
      Cygnus will remain at the orbiting laboratory until January before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere where it will harmlessly burn up. The spacecraft is named the S.S. Francis R. “Dick” Scobee after the former NASA astronaut.
      Learn more about NASA’s commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-21/
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 04, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Kennedy Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      NASA’s Northrop Grumman 21st Cargo Resupply Services Launch
  • Check out these Videos

×
×
  • Create New...