Jump to content

Recommended Posts

Posted
Case 113698: Miguel [last name withheld] while doing his regular exercises and stargazing in his backyard, reported seeing a boomerang traveling from the northeast (generally over the greater Los Angeles region) to the southwest (generally over the Pacific Ocean toward Santa Catalina Island).
 
According to Miguel’s CMS report, the boomerang was over 300 feet in size, had a dark surface, white exterior lights, no emissions and no sound.  It maintained a constant speed and elevation, had “fuzzy edges”, and a “mist or shroud” about it.  There were no colored running lights on the extreme ends of the boomerang.  He saw a helicopter in the area after the object flew past.
 
Miguel attached the artist’s impression of a boomerang shown below to illustrate what he saw.  It was at a distance of more than one mile.

READ MORE

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Technicians do final checks on NASA’s Spirit rover in this image from March 28, 2003. The rover – and its twin, Opportunity – studied the history of climate and water at sites on Mars where conditions may once have been favorable to life. Each rover is about the size of a golf cart and seven times heavier (about 405 pounds or 185 kilograms) than the Sojourner rover launched on the Mars Pathfinder to Mars mission in 1996.
      Spirit and Opportunity were sent to opposite sides of Mars to locations that were suspected of having been affected by liquid water in the past. Spirit was launched first, on June 10, 2003. Spirit landed on the Martian surface on Jan. 3, 2004, about 8 miles (13.4 kilometers) from the planned target and inside the Gusev crater. The site became known as Columbia Memorial Station to honor the seven astronauts killed when the space shuttle Columbia broke apart Feb. 1, 2003, as it returned to Earth. The plaque commemorating the STS-107 Space Shuttle Columbia crew can be seen in the image above.
      Spirit operated for 6 years, 2 months, and 19 days, more than 25 times its original intended lifetime, traveling 4.8 miles (7.73 kilometers) across the Martian plains.
      Image credit: NASA
      View the full article
    • By USH
      On March 26, 2020, a French astronomer Mark Carlotto used a telescope to capture a video showing the moon at night. Dr. M. Carlotto is a specialist in digital video analysis of space objects. The video shows three objects rising above the Moon’s limb, flying across the lunar surface and disappearing in the Moon’s shadow. 

      The fact that some of these objects are so clearly visible and close enough to the moon to be able to cast noticeable shadows immediately suggests that they are quite large. Using the large Endymion crater as a benchmark, the sizes of the objects were determined. 

      The size of the object flying over Endymion is about 5 miles long and about 1 to 3 miles wide. The other two objects appear to be comparable in size. 
      By measuring the displacement of the object it appears that the object is traveling at about 31 mps. It is traveling more than 30 times faster than if it were in lunar orbit. 

      A paper was recently published that attempts to prove that the original video is a fake. Arxiv.org analyzed the video (not included in the analysis) but extracted and provided three images of the recorded objects for examination, as seen above, and they then conducted calculations to verify its authenticity. 
      Despite government and space agency denials of UFO existence, photographic evidence and subsequent analysis suggest the presence of large extraterrestrial craft near the Moon and elsewhere in space.View the full article
    • By NASA
      Portrait of John Boyd, whose contributions to NASA spanned more than 70 years.Credit: NASA John Boyd, known to many as Jack and whose career spanned more than seven decades in a multitude of roles across NASA as well as its predecessor, the National Advisory Committee for Aeronautics (NACA), died Feb. 20. He was 99. Born in 1925, and raised in Danville, Virginia, he was a long-time resident of Saratoga, California.
      Boyd is being remembered by many across the agency, including Dr. Eugene Tu, director, NASA’s Ames Research Center in California’s Silicon Valley, where Boyd spent most of his career.
      “Jack brought an energy, optimism, and team-based approach to solving some of the greatest technological challenges humanity has ever faced, which remains part of our culture to this day,” said Tu. “There are few careers as wide-ranging and impactful as Jack’s.”
      In 1947, Boyd began his career at the then-called Ames Aeronautical Laboratory in Moffett Field, California, as an aeronautical engineer working to design and test various wing shapes using the center’s 1-by-3-foot supersonic wind tunnel. Boyd continued conducting research in wind tunnels, testing designs that led to dramatic increases in the efficiency of the supersonic B-58 bomber, as well as the F-102 and F-106 fighters.
      In 1958, just before Ames became part of a newly established NASA, Boyd recalled thinking, “Maybe someday we’ll go out into the far blue yonder, and if we do, what are we going to fly? How are we going to bring it back into the atmosphere safely?” He and a team of engineers turned their attention to studying the dynamics of high-speed projectiles in hypervelocity ranges, filled with different mixtures of gases to mimic the atmospheres of Mars and Venus, in preparation for sending spacecraft out into space and safely back again or to the surface of other worlds.
      By the mid-60s, Boyd was promoted into leadership and tapped to become deputy director for Aeronautics and Flight Systems at NASA Ames. In the late 1960s, as America was redefining its space exploration goals and sending humans to the Moon, Boyd served as the center’s lead to assist NASA Headquarters in Washington consolidate and create new research programs.
      In 1979, Boyd served as the deputy director at NASA’s Dryden Flight Research Center (now known as NASA’s Armstrong Flight Research Center) in Edwards, California, and prepared the center for its role as a landing site for the space shuttle. He briefly returned to Ames before heading to NASA Headquarters to be associate administrator for management under James M. Beggs. Boyd left government service in 1985, taking a position as chancellor for research and an adjunct professor of aerodynamics, engineering, and the history of spaceflight for the University of Texas System.
      Boyd returned to NASA and California’s Silicon Valley in 1993,inspiring students through educational outreach initiatives, and serving as the senior advisor to the director, senior advisor for history, and the center ombudsman until his retirement in 2020.
      Boyd credits his interest in airplanes to a cousin who was a paratrooper and gave him a ride in a biplane in the 1940s. In 1943, he enrolled and became the first in his family to earn a degree with a bachelor of science in aeronautical engineering from Virginia Polytechnic Institute and State University in Blacksburg, Virginia. He was a recipient of the NASA Exceptional Service Award, the NASA Outstanding Leadership Award, the NASA Equal Employment Opportunity Medal, the Presidential Rank of Meritorious Executive, the NASA Distinguished Service Medal, the Army Command Medal, and the NASA Headquarters History Award. He also was a Fellow of the American Institute of Aeronautics and Astronautics and a Sloan Fellow at Stanford University.
      “The agency and the nation thank and honor Jack as a member of the NASA family and the highest exemplar of a public servant who believed investing in others is the greatest contribution one can make,” added Tu. “He will be deeply missed.”
      For more information about NASA Ames, visit:
      https://www.nasa.gov/ames
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley
      650-604-4789
      rachel.hoover@nasa.gov
      Share
      Details
      Last Updated Feb 26, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Ames Research Center Aeronautics Armstrong Flight Research Center NASA Headquarters National Advisory Committee for Aeronautics (NACA) View the full article
    • By NASA
      How Long Does it Take to Get to the Moon... Mars... Jupiter? We Asked a NASA Expert
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      During the Apollo program, when NASA sent humans to the Moon, those missions took several days to reach the Moon. The fastest of these was Apollo 8, which took just under three days to go from Earth orbit to orbit around the Moon.

      Now it’s possible to save some fuel by flying different kinds of trajectories to the Moon that are shaped in such a way to save fuel. And those trajectories can take more time, potentially weeks or months, to reach the Moon, depending on how you do it.

      Mars is further away, about 50 percent further away from the Sun than Earth is. And reaching Mars generally takes somewhere between seven to ten months, flying a relatively direct route.

      NASA’s Mars Reconnaissance Orbiter mission took about seven and a half months to reach Mars. And NASA’s MAVEN mission took about ten months to reach Mars.

      Jupiter is about five times further away from the Sun than the Earth is. And so in order to make those missions practical, we have to find ways to reduce the fuel requirements. And the way we do that is by having the spacecraft do some flybys of Earth and or Venus to help shape the spacecraft’s trajectory and change the spacecraft’s speed without using fuel. And using that sort of approach, it takes between about five to six years to reach Jupiter.

      So NASA’s Galileo mission, the first mission to Jupiter, took just a little over six years. And then NASA’s second mission to Jupiter, which was called Juno, took just under five years.

      So to get to the Moon takes several days. To get to Mars takes seven to ten months. And getting to Jupiter takes between five and six years.

      [END VIDEO TRANSCRIPT]

      Full Episode List
      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division The Solar System Explore More
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
      In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation…
      Article 18 hours ago 2 min read NASA Science: Being Responsive to Executive Orders
      February 18, 2025 To the NASA Science Community –  As the nation’s leader in Earth…
      Article 19 hours ago 5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
      One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...