Jump to content

Recommended Posts

Posted
Satellites_for_safer_seas_and_a_safer_wo Video: 00:02:43

What if the Titanic had help from satellites? Its journey would likely have ended completely differently.

We live in an ever-changing world; the shipping industry still faces the old dangers, but today also encounters risks due to climate change as well as incentives to become greener.

Fortunately ships today have satellite support. Satellites designed for science, weather monitoring, Earth observation, navigation and communication serve our security needs on a daily basis. Not only in the ocean, but worldwide, in any situation.

From fighting organised crime to monitoring climate change. From establishing worldwide food security to ensuring aviation safety. Global challenges are increasing in breadth and diversity and our notion of safety and security has become much broader in recent decades. Space programmes have become key; most risks to our society and economy require space in order to be adequately avoided, mitigated or managed.

Keep an eye out for new webpages coming soon that highlight how space technology is being applied to safety and security applications on Earth.

In the meantime, find out more at esa.int/spaceforearth

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A multi-orbit constellation of about 300 satellites that will deliver resilient, secure and fast communications for EU governments, European companies and citizens will be put in orbit after two contracts were confirmed today in Brussels.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Current brake system technology cool disc brakes with air pulled from inside the vehicle’s body to prevent overheating. The channels cut into the exterior of the disc brakes developed by Orbis Brakes draw in external air, which is cooler, ensure the brakes work more efficiently.Credit: Orbis Brakes Inc Just as NASA needs to reduce mass on a spacecraft so it can escape Earth’s gravity, automotive manufacturers work to reduce weight to improve vehicle performance. In the case of brake rotors, lighter is better for a vehicle’s acceleration, reliable stopping, and even gas mileage. Orbis Brakes Inc. licensed a NASA-patented technology to accomplish that and more. This revolutionary brake disc design is at least 42% lighter than conventional cast iron rotors, with performance comparable to carbon-ceramic brakes.

      Jonathan Lee, structural materials engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, uses his skills as a mechanical designer backed with material science training on multiple projects including the Space Launch System and the International Space Station. Interested in supporting NASA’s other mission to advance technology to improve life on Earth, he was looking for an innovative way to design a better automobile disc brake.

      He started with a single disc with a series of small fins around the central hub. As they spin, these draw in air and push it across the surface of the disc, where the brake pads make contact. This cools the rotor, as well as the brake pads and calipers. He then added several long, curved depressions around the braking surfaces, radiating from the center to create the regular, periodic pattern that gives the new technology, known as Orbis, its PeriodicWave brand name.

      The spinning fins and the centrifugal force of the wheel push air into trenches, causing a turbulent airflow that draws away heat. These trenches in the braking surfaces also increase the available surface for air cooling by more than 30% and further reduce the weight of the disc. They also increase friction in the same way that scoring concrete makes steps safer to walk on – the brake pads are less likely to slip, which makes braking more reliable.

      The troughs draw away more than just heat, too. Water and road debris getting between the pad and rotor are equally problematic, so the grooves provide a place for the air vortex to push any substance out of the way. A small hole machined at the end of each one creates an opening through which unwanted material can escape. 

      The expertise developed while solving problems in space has proven useful on Earth, too. Orbis’s brakes are sold as aftermarket modifications for high performance cars like the Ford Mustang, as well as some Tesla models.
      Read More Share
      Details
      Last Updated Dec 12, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      3 min read An Electronic Traffic Monitor for Airports 
      Ground traffic management program saves passengers and airlines time while cutting fuel costs
      Article 2 weeks ago 2 min read Super Insulation Requires Super Materials 
      NASA researchers helped create an insulation coating that blocks heat and sunlight
      Article 3 weeks ago 2 min read From Mars Rovers to Factory Assembly Lines
      NASA-funded AI technology enabling autonomous rovers and drones now keeps an eye on conveyor belts
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Materials Science
      Metals | Semiconductors | Polymers and Organics | Glasses and Ceramics | Granular Materials The Microgravity Materials Science Discipline conducts…
      Climate Change
      Astromaterials
      Inside world-class laboratories, scientists perform research on planetary materials and the space environment to investigate the origin and evolution of…
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).NASA/JPL-Caltech/LANL/CNES/CNRS The review takes a close look the final flight of the agency’s Ingenuity Mars Helicopter, which was the first aircraft to fly on another world.
      Engineers from NASA’s Jet Propulsion Laboratory in Southern California and AeroVironment are completing a detailed assessment of the Ingenuity Mars Helicopter’s final flight on Jan. 18, 2024, which will be published in the next few weeks as a NASA technical report. Designed as a technology demonstration to perform up to five experimental test flights over 30 days, Ingenuity was the first aircraft on another world. It operated for almost three years, performed 72 flights, and flew more than 30 times farther than planned while accumulating over two hours of flight time.
      The investigation concludes that the inability of Ingenuity’s navigation system to provide accurate data during the flight likely caused a chain of events that ended the mission. The report’s findings are expected to benefit future Mars helicopters, as well as other aircraft destined to operate on other worlds.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s Ingenuity Mars Helicopter used its black-and-white navigation camera to capture this video on Feb. 11, 2024, showing the shadow of its rotor blades. The imagery confirmed damage had occurred during Flight 72. NASA/JPL-Caltech Final Ascent
      Flight 72 was planned as a brief vertical hop to assess Ingenuity’s flight systems and photograph the area. Data from the flight shows Ingenuity climbing to 40 feet (12 meters), hovering, and capturing images. It initiated its descent at 19 seconds, and by 32 seconds the helicopter was back on the surface and had halted communications. The following day, the mission reestablished communications, and images that came down six days after the flight revealed Ingenuity had sustained severe damage to its rotor blades.
      What Happened
      “When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of JPL. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”
      The helicopter’s vision navigation system was designed to track visual features on the surface using a downward-looking camera over well-textured (pebbly) but flat terrain. This limited tracking capability was more than sufficient for carrying out Ingenuity’s first five flights, but by Flight 72 the helicopter was in a region of Jezero Crater filled with steep, relatively featureless sand ripples.
      This short animation depicts a NASA concept for a proposed follow-on to the agency’s Ingenuity Mars Helicopter called Mars Chopper, which remains in early conceptual and design stages. In addition to scouting, such a helicopter could carry science instruments to study terrain rovers can’t reach. One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.
      Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.
      This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter during its 72nd and final flight on Jan. 18, 2024. High horizontal velocities at touchdown resulted in a hard impact on a sand ripple, which caused Ingenuity to pitch and roll, damaging its rotor blades. NASA/JPL-Caltech Down but Not Out
      Although Flight 72 permanently grounded Ingenuity, the helicopter still beams weather and avionics test data to the Perseverance rover about once a week. The weather information could benefit future explorers of the Red Planet. The avionics data is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.
      “Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”
      Inspired by Ingenuity’s longevity, NASA engineers have been testing smaller, lighter avionics that could be used in vehicle designs for the Mars Sample Return campaign. The data is also helping engineers as they research what a future Mars helicopter could look like — and do.
      During a Wednesday, Dec. 11, briefing at the American Geophysical Union’s annual meeting in Washington, Tzanetos shared details on the Mars Chopper rotorcraft, a concept that he and other Ingenuity alumni are researching. As designed, Chopper is approximately 20 times heavier than Ingenuity, could fly several pounds of science equipment, and autonomously explore remote Martian locations while traveling up to 2 miles (3 kilometers) in a day. (Ingenuity’s longest flight was 2,310 feet, or 704 meters.)
      “Ingenuity has given us the confidence and data to envision the future of flight at Mars,” said Tzanetos.
      More About Ingenuity
      The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment, Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.
      For more information about Ingenuity:
      https://mars.nasa.gov/technology/helicopter
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-171
      Share
      Details
      Last Updated Dec 11, 2024 Related Terms
      Ingenuity (Helicopter) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Perseverance (Rover) Explore More
      3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
      Article 2 days ago 3 min read Students Aim High at NASA JPL ‘Candy Toss’ Competition
      Article 5 days ago 5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.
      The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.
      Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.
      “We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”
      A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.
      Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.
      “Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.
      Where Physics and Biology Meet
      The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.
      Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.
      The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.
      The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.
      Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      More About PACE
      The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2  was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration  was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.
      To learn more about PACE, visit:
      https://pace.gsfc.nasa.gov
      News Media Contacts
      Jacob Richmond (for PACE)
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      jacob.a.richmond@nasa.gov
      Jane J. Lee / Andrew Wang (for SWOT)
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-169
      Share
      Details
      Last Updated Dec 09, 2024 Related Terms
      PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Climate Science Oceans SWOT (Surface Water and Ocean Topography) Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 3 weeks ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
      Article 4 weeks ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Researchers from the University of Leeds have detected methane leaking from a faulty pipe in Cheltenham, Gloucestershire, UK, using GHGSat satellite data – part of ESA’s Third Party Mission Programme. This marks the first time a UK methane emission has been identified from space and successfully mitigated.
      View the full article
  • Check out these Videos

×
×
  • Create New...