Jump to content

European software-defined satellite starts service


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar NASA is participating in a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires.  
      The rugged and often remote locations where wildland fires burn mean cell phone service is often limited, making communication between firefighters and command posts difficult.  
      The flight testing of the Strategic Tactical Radio and Tactical Overwatch (STRATO) technology brought together experts from NASA’s Ames Research Center in California’s Silicon Valley, the U.S. Forest Service, high-altitude balloon company Aerostar, and Motorola to provide cell service from above. The effort was funded by the NASA Science Mission Directorate’s Earth Science Division Airborne Science Program and the agency’s Space Technology Mission Directorate Flight Opportunities program.  
      “This project leverages NASA expertise to address real problems,” said Don Sullivan, principal investigator for STRATO at NASA Ames. “We do a lot of experimental, forward-thinking work, but this is something that is operational and can make an immediate impact.” 
      Flying High Above Wildland Fires 
      Soaring above Earth at altitudes of 50,000 feet or more, Aerostar’s Thunderhead high-altitude balloon systems can stay in operation for several months and can be directed to “station keep,” staying within a radius of few miles. Because wildland fires often burn in remote, rugged areas, firefighting takes place in areas where cell service is not ideal. Providing cellular communication from above, from a vehicle that can move as the fire changes, would improve firefighter safety and firefighting efficiency. 
      The STRATO project’s first test flight took place over the West Mountain Complex fires in Idaho in August and demonstrated significant opportunities to support future firefighting efforts. The balloon was fitted with a cellular LTE transmitter and visual and infrared cameras. To transmit between the balloon’s cell equipment and the wildland fire incident command post, the team used a SpaceX Starlink internet satellite device and Silvus broadband wireless system. 
      When tested, the onboard instruments provided cell coverage for a 20-mile radius. By placing the transmitter on a gimbal, that cell service coverage could be adjusted as ground crews moved through the region. 
      The onboard cameras gave fire managers and firefighters on the ground a bird’s-eye view of the fires as they spread and moved, opening the door to increased situational awareness and advanced tracking of firefighting crews. On the ground, teams use an app called Tactical Awareness Kit (TAK) to identify the locations of crew and equipment. Connecting the STRATO equipment to TAK provides real-time location information that can help crews pinpoint how the fire moves and where to direct resources while staying in constant communication. 
      Soaring Into the Future 
      The next steps for the STRATO team are to use the August flight test results to prepare for future fire seasons. The team plans to optimize balloon locations as a constellation to maximize coverage and anticipate airflow changes in the stratosphere where the balloons fly. By placing balloons in strategic locations along the airflow path, they can act as replacements to one another as they are carried by airflow streams. The team may also adapt the scientific equipment aboard the balloons to support other wildland fire initiatives at NASA. 
      As the team prepares for further testing next year, the goal is to keep firefighters informed and in constant communication with each other and their command posts to improve the safety and efficiency of fighting wildland fires. 
      “Firefighters work incredibly hard saving lives and property over long days of work,” said Sullivan. “I feel honored to be able to do what we can to make their jobs safer and better.” 
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Ames Research Center Airborne Science Earth Science Division Flight Opportunities Program Explore More
      5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
      Article 17 mins ago 3 min read Entrevista con Instructor de OCEANOS Samuel Suleiman
      Article 1 day ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barberena-Arias
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Improving Firefighter Safety with STRATO
      Airborne Science at Ames
      Space Technology Mission Directorate
      View the full article
    • By NASA
      MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become.
      “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon.
      Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather.
      “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx.
      Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes.
      The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the European Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface.
      Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf.
      Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.”
      Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said.
      Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts.
      “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division.
      Project Lead: Chris Ruf, University of Michigan
      Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More
      22 min read Summary of the Second OMI–TROPOMI Science Team Meeting


      Article


      1 hour ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      6 days ago
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 week ago
      View the full article
    • By NASA
      NASA and the military have shared strong connections since the agency’s early days. From the nation’s earliest aeronautic research and the recruitment of test pilot astronauts to modern-day technology development, satellite management, and planetary defense, NASA has built a longstanding partnership with the military.

      This legacy of collaboration has created natural opportunities for former service members to join NASA’s ranks at the conclusion of their military careers.

      Lewis Swain is one of the many veterans working at Johnson Space Center in Houston today. Swain was recruited by NASA contractor McDonnell Douglas after leaving the military in 1980. He commissioned as a second lieutenant and served in the Air Force for 12 years, flying nearly 200 combat missions during two tours in Vietnam.

      “The shuttle program was starting, and they needed ex-military pilots to serve as simulation instructors,” he said. Swain specialized in control and propulsion systems instruction for several years before becoming the training team lead for shuttle missions. Following the Challenger accident in 1986, Swain transitioned to supporting the International Space Station Program and Return to Flight evaluations. He has been a civil servant since 1989 and a training facility manager since 2006.

      L. Jerry Swain during his Air Force career (left) and as a facility manager at Johnson Space Center in Houston (right).Images courtesy of L. Jerry Swain NASA’s Pathways Internship Program has also provided a point of entry for former service members. John Smith was studying mechanical engineering at the University of Texas at El Paso when he made an impactful Johnson connection. “I met with a former flight director, Ms. Ginger Kerrick, at a career fair hosted by my university,” he said. “Pathways happened to be accepting applications at the time and she enthusiastically encouraged me to apply. I never expected to get a response, much less an offer. I couldn’t say yes fast enough when it came!”

      For others, the NASA SkillBridge Program has been instrumental in transitioning from the military to civilian careers. The program connects individuals in their final months of military service with a NASA office or organization. SkillBridge fellows work anywhere from 90 to 180 days, contributing their unique skillsets to the agency while building their network and knowledge. Since fellows’ pay and benefits are provided by their military branch, their support comes at no additional cost to NASA.

      Johnson hosted the agency’s first-ever SkillBridge fellow in spring 2019, paving the way for many others to follow. Albert Meza, an Air Force space professional, was among this first wave of service members at NASA. 
      Approaching retirement from the Air Force in November 2019, Meza planned to move his family back to Houston that summer, then join them in the fall once his military service ended. A colleague encouraged him to apply for SkillBridge because it would let Meza move with his family. Meza was skeptical, noting the military is not typically flexible on moves or timelines, but after a quick meeting with his commanding officer and finding a Johnson team to work with, he was on his way to Houston. “It was unbelievable,” he said. “It kind of fell into my lap.”

      Albert Meza visits Johnson Space Center’s Space Vehicle Mockup Facility while serving in the Air Force (left) and receives an award from NASA astronaut Rex J. Walheim during his retirement ceremony at Space Center Houston (right). Images courtesy of Albert Meza Today Meza is a payload integration manager for NASA’s CLPS (Commercial Lunar Payload Services) program, working within the Exploration Architecture, Integration, and Science Directorate at Johnson. In this role, he acts as a liaison between payload teams and the vendor developing a lander to help ensure flight requirements are understood and met.

      Meza is also one of SkillBridge’s on-site coordinators. He said that when he first arrived at Johnson, he realized the program was relatively unknown. “I thought, I need to take the responsibility for waving the flag for SkillBridge at NASA.” Meza works tirelessly to educate service members, military leaders, and NASA supervisors about the program’s benefits. He also emphasizes how easy it is for NASA supervisors to host a fellow. “You get someone for six months who is already disciplined, loyal, and has all of these highly trained credentials,” he said. “Any civil servant supervisor can host a SkillBridge fellow. The only real requirement is that the supervisor can provide IT assets and a work location.”

      Johnson has hosted more than 25 SkillBridge fellows since the program’s inception. Many fellows have since accepted full-time positions with NASA, including Patricia “Trish” Elliston. Meza found her a SkillBridge position with the center’s Protective Services Division in spring 2023. Elliston relocated to Houston in 2020, a few years prior to her anticipated retirement from the U.S. Coast Guard. Living in Houston and interacting with numerous NASA employees, along with prior experience working with the agency in maritime safety, convinced Elliston that Johnson was the place for her.

      Trish Elliston flies aboard an aircraft during a mission (left) and visits Johnson Space Center’s Space Vehicle Mockup Facility (right) while serving in the U.S. Coast Guard. Images courtesy of Trish Elliston “During my internship I networked as much as possible and made every effort to learn as much as I could so that I could be better prepared to start my civilian career,” Elliston said. “I worked hard and learned a lot, and when a job opportunity became available, I applied.” She now works as a cyber intelligence analyst within the Flight Operations Directorate.

      Meza notes that SkillBridge is a transition program, not a hiring program, and that some fellows have not received a job offer or have decided to pursue other opportunities. What happens after a SkillBridge fellowship depends on each individual and whether they’ve demonstrated their potential and built relationships in a way that turns this ‘foot in the door’ into a full-time position.  

      Interested in becoming a SkillBridge fellow at NASA? Learn more about the program and submit your application here.
      View the full article
    • By European Space Agency
      ESA is taking a significant step towards creating a more digitally inclusive Europe through a new partnership that will bring internet access to the hardest-to-reach areas. Reliable connectivity has become essential in today's digital age, yet for many Europeans in rural villages, mountainous regions, and small islands, dependable internet access remains out of reach.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGS Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.
      We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.
      The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
      Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.
      The NISAR mission will measure the motion of Earth’s surface — data that can be used to  monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies Beneath
      Targeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.
      The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.
      “The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.
      Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.
      “From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”
      Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.
      Finding Normal
      When it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.
      The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.
      “There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”
      More About NISAR
      The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-155
      Share
      Details
      Last Updated Nov 08, 2024 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
      2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
      Article 22 hours ago 3 min read Integrating Relevant Science Investigations into Migrant Children Education
      For three weeks in August, over 100 migrant children (ages 3-15) got to engage in…
      Article 2 days ago 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...