Jump to content

UFO next to beam of light coming down through a cloud over Forest Glen Park, U.S.


Recommended Posts

Posted
A strange beam of light and two bright spheres coming down through a cloud over Silver Spring, Forest Glen Park, U.S. 

ufo%2Bbeam%2Bof%2Blight.jpg

It's not the first time strange beams of light have been photographed and it seems unlikely that all these beams are just natural phenomena, camera malfunctions or digital cam glitches. 

Normally we only see a beam, but this time there are two glowing spheres next to the ray. The spheres seem to be on top or connected to an oval disk-shaped construction. 

It may be far-fetched, but could the beam of light be a means of teleporting a UFO that travels instantaneously between two locations without crossing the intervening space? source: www.mufon.com

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the Intuitive Machines IM-2 mission is targeted to launch no earlier than Wednesday, Feb. 26. The mission will lift off on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

      Live launch coverage will air on NASA+ with prelaunch events starting Tuesday, Feb. 25. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live
      After the launch, Intuitive Machines’ lunar lander, Athena, will spend approximately one week in transit to the Moon before landing on the lunar surface no earlier than Thursday, March 6. The lander will carry NASA science investigations and technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on-site demonstrations of resource use on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau in the Moon’s South Pole. In addition, a passive Laser Retroreflector Array (LRA) on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.

      Full coverage of this mission is as follows (all times Eastern):

      Tuesday, Feb. 25

      11 a.m. – Lunar science and technology media teleconference with the following participants:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Jackie Quinn, Polar Resources Ice Mining Experiment 1 (PRIME-1) project manager, NASA Kennedy Daniel Cremons, LRA deputy principal investigator, NASA’s Goddard Space Flight Center Bethany Ehlmann, Lunar Trailblazer principal investigator, Caltech Trent Martin, senior vice president, space systems, Intuitive Machines Thierry Klein, president, Bell Labs Solution Research, Nokia Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Tuesday, Feb. 25, at: ksc-newsroom@mail.nasa.gov.

      Wednesday, Feb. 26


      11:30 a.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines William Gerstenmaier, vice president, build and flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Wednesday, Feb. 26, at: ksc-newsroom@mail.nasa.gov.

      Launch coverage will begin on NASA+ approximately 45 minutes before liftoff. A specific time will be shared the week of Feb. 24.

      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.

      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.

      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning Feb. 26, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.

      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!

      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon

      Facebook: NASA, NASAKennedy, NASAArtemis

      Instagram: @NASA, @NASAKennedy, @NASAArtemis

      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Jasmine Hopkins
      Headquarters, Washington
      301-286-6284 / 321-432-4624
      karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      The Crew Health and Performance Exploration Analog (CHAPEA) team hosts a Media Day at NASA’s Johnson Space Center in Houston on April 11, 2023.Credit: NASA Media are invited to visit NASA’s simulated Mars habitat on Monday, March 10, at the agency’s Johnson Space Center in Houston. The simulation will help prepare humanity for future missions to the Red Planet.
      This is the second of three missions as part of NASA’s CHAPEA (Crew Health and Performance Exploration Analog), set to begin in May 2025 when volunteer crew members enter the 3D printed habitat to live and work for a year.
      During the mission, crew members will carry out different types of mission activities, including simulated “marswalks,” robotic operations, habitat maintenance, personal hygiene, exercise, and crop growth. Crew also will face planned environmental stressors such as resource limitations, isolation, and equipment failure.
      The in-person media event includes an opportunity to speak with subject matter experts and capture b-roll and photos inside the habitat. Crew members will arrive for training at a later date and will not be available at this event.
      To attend the event, U.S. media must request accreditation by 5 p.m. CDT Monday, March 3, and international media by 5 p.m., Monday, Feb. 24, via the NASA Johnson newsroom at: 281-483-5111 or jsccommu@nasa.gov. Media accreditation will be limited due to limited space inside the habitat. Confirmed media will receive additional details on how to participate.
      For more information about CHAPEA, visit:
      https://www.nasa.gov/humans-in-space/chapea
      -end-
      Cindy Anderson / James Gannon
      Headquarters, Washington
      202-358-1600
      cindy.anderson@nasa.gov / james.h.gannon@nasa.gov
      Kelsey Spivey
      Johnson Space Center, Houston
      281-483-5111
      kelsey.m.spivey@nasa.gov
      Victoria Segovia
      Johnson Space Center, Houston
      281-483-5111
      victoria.segovia@nasa.gov
      Share
      Details
      Last Updated Feb 20, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Analog Field Testing Crew Health and Performance Exploration Analog (CHAPEA) Johnson Space Center View the full article
    • By USH
      On January 25, 2025, an Oklahoma City man recorded a baffling UFO that he described as a "plasma-filled jellybean." A concerned neighbor also spotted something unusual in the sky and soon, the entire neighborhood gathered outside, to witness the anomaly. 

      The mysterious object emitted a glow and moved erratically, mesmerizing onlookers. In his recorded footage, Frederick can be heard narrating the event. "I don’t hear anything, and it's moving unpredictably," he noted. "It looks like a jellybean, but the interior appears to be plasma." 
      Frederick decided to launch his drone for a closer look, but upon attempting to deploy his drone, he encountered unexplained technical failures. "My controller provides voice notifications," he explained. "It repeatedly announced, ‘unable to take off, electromagnetic interference." 
      After multiple attempts, he finally got the drone airborne, reaching approximately 1,000 feet beneath the UFO. However, just after capturing three images, the drone’s video function failed, and its battery, despite being fully charged, suddenly drained. "It had a 35-minute flight time," Frederick stated. "But right after taking those three pictures, the controller alerted me: ‘low battery, return to home." 
      Seeking expert insight, Frederick shared his footage and images with University of Oklahoma physics professor Mukremin Kilic. When asked about the sighting, Kilic remarked, "I don’t know what it is" and suggested the object was likely a drone. However, this theory does not explain why Frederick’s own drone experienced interference, raising further questions about the true nature of the UFO.
        View the full article
    • By NASA
      Official crew portrait for NASA’s SpaceX Crew-10 mission with NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov.Credit: NASA NASA and its partners will discuss the upcoming Expedition 73 mission aboard the International Space Station during a pair of news conferences on Monday, Feb. 24, from the agency’s Johnson Space Center in Houston.
      Mission leadership will participate in an overview news conference at 2 p.m. EST live on NASA+, covering preparations for NASA’s SpaceX Crew-10 launch in March and the agency’s crew member rotation launch on Soyuz in April. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA also will host a crew news conference at 4 p.m. and provide coverage on NASA+, followed by individual crew member interviews beginning at 5 p.m. This is the final media opportunity with Crew-10 before the crew members travel to NASA’s Kennedy Space Center in Florida for launch.
      The Crew-10 mission, targeted to launch Wednesday, March 12, will carry NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory.
      NASA astronaut Jonny Kim, scheduled to launch to the space station on the Soyuz MS-27 spacecraft no earlier than April 8, also will participate in the crew briefing and interviews. Kim will be available again on Tuesday, March 18, for limited virtual interviews prior to launch. NASA will provide additional details on that opportunity when available.
      For the Crew-10 mission, a SpaceX Falcon 9 rocket and Dragon spacecraft will launch from Launch Complex 39A at NASA Kennedy. The three-person crew of Soyuz MS-27, including Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, will launch from the Baikonur Cosmodrome in Kazakhstan.
      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Friday, Feb. 21, at 281-483-5111 or at jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson by 9:45 a.m. the day of the event.
      U.S. and international media seeking remote interviews with the crew must submit requests to the NASA Johnson newsroom by 5 p.m. on Feb. 21. A copy of NASA’s media accreditation policy is available online.
      Briefing participants include (all times Eastern and subject to change based on real-time operations):
      2 p.m.: Expedition 73 Overview News Conference
      Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington Steve Stich, manager, NASA’s Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, NASA’s International Space Station Program, NASA Johnson William Gerstenmaier, vice president, Build & Flight Reliability, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 4 p.m.: Expedition 73 Crew News Conference
      Jonny Kim, Soyuz MS-27 flight engineer, NASA Anne McClain, Crew-10 spacecraft commander, NASA Nichole Ayers, Crew-10 pilot, NASA Takuya Onishi, Crew-10 mission specialist, JAXA Kirill Peskov, Crew-10 mission specialist, Roscosmos 5 p.m.: Crew Individual Interview Opportunities
      Crew-10 members and Kim available for a limited number of interviews Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73.Credit: NASA Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, Kim is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing the initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.
      Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59, and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.
      The Crew-10 mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, where she was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.
      With 113 days in space, this mission also will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.
      The Crew-10 mission will also be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.
      Learn more about how NASA innovates for the benefit of humanity through NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Anne C. McClain Astronauts Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center Jonny Kim Nichole Ayers View the full article
    • By NASA
      Skywatching Science Skywatching The Next Full Moon is the Snow… Skywatching Home What’s Up Eclipses Explore the Night Sky Night Sky Network More Tips and Guides FAQ   23 Min Read The Next Full Moon is the Snow Moon
      A full moon hike at Bryce Canyon National Park. Credits:
      National Park Service The next full moon will be Wednesday morning, Feb. 12, 2025, appearing opposite the Sun (in Earth longitude) at 8:53 a.m. EST. The Moon will appear full for about three days around this time, from Monday night into early Thursday evening. The bright star Regulus will appear near the full moon.
      Sky chart showing Jupiter and Mars high overhead after nightfall in February. NASA/JPL-Caltech The Maine Farmers’ Almanac began publishing Native American names for full moons in the 1930s, and these names are now widely known and used. According to this almanac, as the full moon in February, the tribes of the northeastern U.S. called this the Snow Moon or the Storm Moon because of the heavy snows in this season. Bad weather and heavy snowstorms made hunting difficult, so this Moon was also called the Hunger Moon. NOAA monthly averages for the Washington, D.C. area airports from 1991 to 2020 show January and February nearly tied as the snowiest months of the year (with February one tenth of an inch ahead).
      Here are the other celestial events between now and the full moon after next with times and angles based on the location of NASA Headquarters in Washington:
      As winter continues in the Northern Hemisphere, the daily periods of sunlight continue to lengthen. Wednesday, Feb. 12 (the day of the full moon), morning twilight will begin at 6:04 a.m. EST, sunrise will be at 7:03 a.m., solar noon will be at 12:23 p.m. when the Sun will reach its maximum altitude of 37.7 degrees, sunset will be at 5:43 p.m., and evening twilight will end at 6:41 p.m.
      Daylight Saving Time starts on the second Sunday in March for much of the United States. The day before, Saturday, March 8, morning twilight will begin at 5:32 a.m., sunrise will be at 6:30 a.m., solar noon will be at 12:19 p.m. when the Sun will reach its maximum altitude of 46.5 degrees, sunset will be at 6:08 p.m., and evening twilight will end at 7:06 p.m. Early on Sunday morning, March 9, the clock will “spring forward” from 1:59:59 a.m. EST to 3:00:00 a.m. EDT. Sunday, March 9, morning twilight will begin at 6:30 a.m., sunrise will be at 7:28 a.m., solar noon will be at 1:19 p.m. when the Sun will reach its maximum altitude of 46.9 degrees, sunset will be at 7:09 p.m., and evening twilight will end at 8:07 p.m. By Friday, March 14 (the day of the full moon after next), morning twilight will begin at 6:23 a.m., sunrise will be at 7:20 a.m., solar noon will be at 1:17 p.m. when the Sun will reach its maximum altitude of 48.9 degrees, sunset will be at 7:14 p.m., and evening twilight will end at 8:12 p.m.
      This should still be a good time for planet watching, especially with a backyard telescope. On the evening of the March 14, the full moon, Venus, Jupiter, Mars, Saturn, and Uranus will all be in the evening sky. The brightest of the planets, Venus, will be 28 degrees above the west-southwestern horizon, appearing as a 29% illuminated crescent through a telescope. Second in brightness will be Jupiter at 71 degrees above the south-southeastern horizon. With a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. Jupiter was at its closest and brightest in early December. Third in brightness will be Mars at 48 degrees above the eastern horizon. Mars was at its closest and brightest for the year just a month ago. Fourth in brightness (and appearing below Venus) will be Saturn at 11 degrees above the west-southwestern horizon. With a telescope you may be able to see Saturn’s rings and its bright moon Titan. The rings will appear very thin and will be edge-on to Earth in March 2025. Saturn was at its closest and brightest in early September. The planet Uranus will be too dim to see without a telescope when the Moon is in the sky, but later in the lunar cycle, if you are in a very dark area with clear skies and no interference from moonlight, it will still be brighter than the faintest visible stars. Uranus was at its closest and brightest in mid-November.
      During this lunar cycle, these planets, along with the background of stars, will rotate westward by about a degree each night around the pole star Polaris. Venus, named after the Roman goddess of love, will reach its brightest around Feb. 14, making this a special Valentine’s Day. After about Feb. 17, the planet Mercury, shining brighter than Mars, will begin emerging from the glow of dusk about 30 minutes after sunset. Feb. 24 will be the first evening Mercury will be above the western horizon as twilight ends, while Feb. 25 will be the last evening Saturn will be above the western horizon as twilight ends, making these the only two evenings that all of the visible planets will be in the sky after twilight ends. For a few more evenings after this, Saturn should still be visible in the glow of dusk during twilight. Around March 8 or 9, Mercury will have dimmed to the same brightness as Mars, making Mars the third brightest visible planet again. By the evening of March 13 (the evening of the night of the full moon after next), as twilight ends, Venus and Mercury will appear low on the western horizon, making them difficult targets for a backyard telescope, while Jupiter and Mars (and Uranus) will appear high overhead and much easier to view.
      Comets and Meteor Showers
      No meteor shower peaks are predicted during this lunar cycle. No comets are expected to be visible without a telescope for Northern Hemisphere viewers. Southern Hemisphere viewers may still be able to use a telescope to see comet C/2024 G3 (ATLAS), although it is fading as it moves away from Earth and the Sun, and some recent reports suggest that it might be breaking apart and disappearing from view.
      Evening Sky Highlights
      On the evening of Wednesday, Feb. 12 (the evening of the full moon), as twilight ends at 6:41 p.m. EST, the rising Moon will be 7 degrees above the east-northeastern horizon with the bright star Regulus 2 degrees to the right. The brightest planet in the sky will be Venus at 28 degrees above the west-southwestern horizon, appearing as a crescent through a telescope. Next in brightness will be Jupiter at 71 degrees above the south-southeastern horizon. Third in brightness will be Mars at 48 degrees above the eastern horizon. The fourth brightest planet will be Saturn at 11 degrees above the west-southwestern horizon. Uranus, on the edge of what is visible under extremely clear, dark skies, will be 68 degrees above the south-southwestern horizon. The bright star closest to overhead will be Capella at 75 degrees above the northeastern horizon. Capella is the 6th brightest star in our night sky and the brightest star in the constellation Auriga (the charioteer). Although we see Capella as a single star, it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 light years from us.
      Also high in the sky will be the constellation Orion, easily identifiable because of the three stars that form Orion’s Belt. This time of year, we see many bright stars in the sky at evening twilight, with bright stars scattered from the south-southeast toward the northwest. We see more stars in this direction because we are looking toward the Local Arm of our home galaxy (also called the Orion Arm, Orion-Cygnus Arm, or Orion Bridge). This arm is about 3,500 light years across and 10,000 light years long. Some of the bright stars from this arm that we see are the three stars of Orion’s Belt, and Rigel (860 light years from Earth), Betelgeuse (548 light years), Polaris (about 400 light years), and Deneb (about 2,600 light years).
      Facing toward the south from the Northern Hemisphere, to the upper left of Orion’s Belt is the bright star Betelgeuse (be careful not to say this name three times). About the same distance to the lower right is the bright star Rigel. Orion’s belt appears to point down and to the left about seven belt lengths to the bright star Sirius, the brightest star in the night sky. Below Sirius is the bright star Adhara. To the upper right of Orion’s Belt (at about the same distance from Orion as Sirius) is the bright star Aldebaran. Nearly overhead is the bright star Capella. To the left (east) of Betelgeuse is the bright star Procyon. The two stars above Procyon are Castor and Pollux, the twin stars of the constellation Gemini (Pollux is the brighter of the two). The bright star Regulus appears farther to the left (east) of Pollux near the eastern horizon. For now, Mars is near Castor and Pollux, while Jupiter is near Aldebaran, but these are planets (from the Greek word for wanderers) and continue to shift relative to the background of the stars. Very few places on the East Coast are dark enough to see the Milky Way (our home galaxy), but if you could see it, it would appear to stretch overhead from the southeast to the northwest. Since we are seeing our galaxy from the inside, the combined light from its 100 to 400 billion stars make it appear as a band surrounding Earth.
      As this lunar cycle progresses, the planets and the background of stars will rotate westward by about a degree each evening around the pole star Polaris. The brightest of the planets, Venus, will reach its brightest around Valentine’s Day, Feb. 14.  Bright Mercury will begin emerging from the glow of dusk around Feb. 17 and will be above the horizon as twilight ends beginning Feb. 24, initiating a brief period when all the visible planets will be in the evening sky at the same time that will end after Feb. 25, the last evening Saturn will be above the horizon as twilight ends. Feb. 24 and 25 will also be the two evenings when Mercury and Saturn will appear closest together.
      The waxing crescent “Wet” or “Cheshire” Moon will appear near Mercury on Feb. 28 and Venus on March 1, appearing like a bowl or a smile above the horizon. The waxing gibbous Moon will appear near Mars and Pollux on March 8. Mercury will reach its highest above the horizon as twilight ends on March 8 but will be fading, appearing fainter than Mars. The nearly full moon will appear near Regulus on March 11. Venus and Mercury will be closest to each other on March 12.
      By the evening of Thursday, March 13 (the evening of the night of the full moon after next), as twilight ends at 8:11 p.m. EDT, the rising Moon will be 14 degrees above the eastern horizon. The brightest planet in the sky will be Venus at 4 degrees above the west-southwestern horizon, appearing as a thin, 4% illuminated crescent through a telescope. Next in brightness will be Jupiter at 62 degrees above the west-southwestern horizon. Third in brightness will be Mars at 72 degrees above the southeastern horizon. Mercury, to the left of Venus, will also be 4 degrees above the western horizon. Uranus, on the edge of what is visible under extremely clear, moonless dark skies, will be 45 degrees above the western horizon. The bright star closest to overhead will still be Capella at 75 degrees above the northwestern horizon.
      Morning Sky Highlights
      On the morning of Wednesday, Feb. 12, 2025 (the morning of the night of the full moon), as twilight begins at 6:04 a.m. EST, the setting full moon will be 13 degrees above the western horizon. No planets will appear in the sky. The bright star appearing closest to overhead will be Arcturus at 65 degrees above the southeastern horizon. Arcturus is the brightest star in the constellation Boötes (the herdsman or plowman) and the 4th brightest star in our night sky. It is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. One way to identify Arcturus in the night sky is to start at the Big Dipper, then follow the arc of the dipper’s handle as it “arcs toward Arcturus.”
      As this lunar cycle progresses the background of stars will rotate westward by about a degree each morning around the pole star Polaris. The waning Moon will appear near Regulus on Feb. 13, Spica on Feb. 17, and Antares on Feb. 21. The nearly full moon will appear near Regulus on March 12.
      By the morning of Friday, March 14 (the morning of the full moon after next), as twilight begins at 6:23 a.m. EDT, the setting full moon will be 12 degrees above the western horizon. No visible planets will appear in the sky. The bright star closest to overhead will be Vega at 68 degrees above the eastern horizon. Vega is the 5th brightest star in our night sky and the brightest star in the constellation Lyra (the lyre). Vega is one of the three bright stars of the “Summer Triangle” (along with Deneb and Altair). It is about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun.
      Detailed Daily Guide
      Here is a day-by-day listing of celestial events between now and the full moon on March 14, 2025. The times and angles are based on the location of NASA Headquarters in Washington, and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app that is set up for your location or a star-watching guide from a local observatory, news outlet, or astronomy club.
      Sunday morning, Feb. 9 Mars will appear to the upper left of the waxing gibbous Moon. In the early morning at about 2 a.m. EST, Mars will be 8 degrees from the Moon. By the time the Moon sets on the northwestern horizon at 5:58 a.m., Mars will have shifted to 6 degrees from the Moon. For parts of Asia and Northern Europe the Moon will pass in front of Mars. Also, Sunday morning, the planet Mercury will be passing on the far side of the Sun as seen from Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of dusk on the west-southwestern horizon after about Feb. 17 (depending upon viewing conditions).
      Sunday evening into Monday morning, Feb. 9 – 10 The waxing gibbous Moon will have shifted to the other side of the Mars (having passed in front of Mars in the afternoon when we could not see them). As evening twilight ends (at 6:38 p.m. EST) the Moon will be between Mars and the bright star Pollux, with Mars 3 degrees to the upper right and Pollux 3 degrees to the lower left. By the time the Moon reaches its highest for the night at 10:27 p.m., Mars will be 4.5 degrees to the right of the Moon and Pollux 2.5 degrees to the upper left of the Moon. Mars will set first on the northwestern horizon Monday morning at 5:44 a.m., just 22 minutes before morning twilight begins at 6:06 a.m.
      Wednesday morning, Feb. 12 As mentioned above, the full moon will be Wednesday morning, Feb. 12, at 8:53 a.m. EST. This will be on Thursday morning from Australian Central Time eastward to the international date line in the mid-Pacific. The Moon will appear full for about three days around this time, from Monday night into early Thursday evening.
      Wednesday evening into Thursday morning, Feb. 12 to 13 The bright star Regulus will appear near the full moon. As evening twilight ends at 6:41 p.m. EST, Regulus will be less than 2 degrees to the right of the Moon, very near its closest. By the time the Moon reaches its highest for the night at 12:55 a.m., Regulus will be 3 degrees to the right. As morning twilight begins at 6:03 a.m., Regulus will be 5 degrees to the lower right of the Moon.
      Friday evening, Feb. 14 Venus, the brightest of the planets, will be near its brightest for the year (based on a geometric estimate called greatest brilliancy). As evening twilight ends at 6:43 p.m. EST, Venus will be 28 degrees above the west-southwestern horizon. Venus will set on the western horizon about 2.5 hours later at 9:09 p.m. Having Venus, named after the Roman goddess of love, shining at its brightest on this evening will make for a special Valentine’s Day!
      Sunday night into Monday morning Feb. 16 to 17 Bright star Spica will appear near the waning gibbous Moon. As Spica rises on the east-southeastern horizon at 10:19 p.m. EST, it will be 3.5 degrees to the lower left of the Moon. Throughout the night Spica will appear to rotate clockwise around the Moon. As the Moon reaches its highest at 3:37 a.m., Spica will be 2 degrees to the left of the Moon. By the time morning twilight begins at 5:58 a.m., Spica will be a little more than a degree above the Moon.
      Monday evening, Feb. 17 This will be the first evening Mercury will be above the west-southwestern horizon 30 minutes after sunset, a rough approximation of when it might start emerging from the glow of dusk before evening twilight ends. Increasing the likelihood it will be visible, Mercury will be brighter than Mars, but not as bright as Jupiter.
      Monday evening, Feb. 17 At 8:06 p.m. EST, the Moon will be at apogee, its farthest from Earth for this orbit.
      Midday on Thursday, Feb. 20 The waning Moon will appear half full as it reaches its last quarter at 12:32 p.m. EST.
      Friday morning, Feb. 21 The bright star Antares will appear quite near the waning crescent Moon. As the Moon rises on the southeastern horizon at 2:05 a.m. EST, Antares will be one degree to the upper left. Antares will appear to rotate clockwise and shift away from the Moon as morning progresses. By the time morning twilight begins at 5:53 a.m., Antares will be 2 degrees to the upper right of the Moon. From the southern part of South America, the Moon will actually block Antares from view.
      Monday, Feb. 24 This will be the first evening Mercury will be above the western horizon as evening twilight ends at 6:54 p.m. EST, setting three minutes later at 6:57 p.m. This will be the first of two evenings when all the visible planets will be in the evening sky at the same time after twilight ends.
      This also will be the evening when Mercury and Saturn will appear nearest to each other, 1.6 degrees apart. To see them you will need a very clear view toward the western horizon and will likely have to look before evening twilight ends at 6:54 p.m. EST, as Mercury will set three minutes later at 6:57 p.m., and Saturn two minutes after Mercury at 6:59 p.m.
      Tuesday, Feb. 25 This will be the last evening Saturn will be above the western horizon as evening twilight ends at 6:55 p.m. EST, setting one minute later at 6:56 p.m. This will be the last of two evenings when all of the visible planets will be in the evening sky at the same time after twilight ends. Mercury and Saturn will appear almost as close together as the night before, with Mercury setting six minutes after Saturn at 7:02 p.m. Saturn, appearing about as bright as the star Pollux, may still be visible in the glow of dusk before evening twilight ends for a few evenings after this.
      Thursday evening, Feb. 27 At 7:45 p.m. EST will be the new Moon, when the Moon passes between Earth and the Sun and will not be visible from Earth.
      The day of, or the day after, the new Moon marks the start of the new month for most lunisolar calendars. The second month of the Chinese calendar starts on Friday, Feb. 28. Sundown on Feb. 28 also marks the start of Adar in the Hebrew calendar. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way (intended for civil and not religious purposes). This calendar predicts the holy month of Ramadan will start with sunset on Feb. 28, but because of Ramadan’s religious significance, it is one of four months in the Islamic year where the start of the month is updated based upon the actual sighting of the crescent Moon. Ramadan is honored as the month in which the Quran was revealed. Observing this annual month of charitable acts, prayer, and fasting from dawn to sunset is one of the Five Pillars of Islam.
      Friday evening, Feb. 28 As evening twilight ends at 6:58 p.m. EST, you may be able to see the thin, waxing crescent Moon barely above the western horizon. The Moon will set two minutes later at 7 p.m. Mercury will be 3.5 degrees above the Moon. For this and the next few evenings the waxing crescent Moon will appear most like an upward-facing bowl or a smile in the evening sky (for the Washington, D.C. area and similar latitudes, at least). This is called a “wet” or a “Cheshire” Moon. The term “wet Moon” appears to originate from Hawaiian mythology. It’s when the Moon appears like a bowl that could fill up with water. The time of year when this occurs as viewed from the latitudes of the Hawaiian Islands roughly corresponds with Kaelo the Water Bearer in Hawaiian astrology. As the year passes into summer, the crescent shape tilts, pouring out the water and causing the summer rains. The term “Cheshire Moon” is a reference to the smile of the Cheshire Cat in Lewis Carroll’s book “Alice’s Adventures in Wonderland.”
      Saturday afternoon, March 1 At 4:14 p.m. EST, the Moon will be at perigee, its closest to Earth for this orbit.
      Saturday evening, as evening twilight ends at 6:59 p.m. EST, the thin, waxing crescent Moon will be 13 degrees above the western horizon, with Venus 7 degrees to the upper right of the Moon. Mercury will appear about 10 degrees below the Moon. The Moon will set 76 minutes later at 8:15 p.m.
      Tuesday, March 4 This is Mardi Gras (Fat Tuesday), which marks the end of the Carnival season that began on January 6. Don’t forget to march forth on March Fourth!
      Thursday, March 6 The Moon will appear half-full as it reaches its first quarter at 11:32 a.m. EST.
      Saturday morning, March 8 Just after midnight, Mercury will reach its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation).
      Saturday evening, will be when Mercury will appear at its highest (6 degrees) above the western horizon as evening twilight ends at 7:06 p.m. EST. Mercury will set 34 minutes later at 7:40 p.m. This will also be the evening Mercury will have dimmed to the brightness as Mars, after which Mars will be the third brightest visible planet again.
      Also on Saturday evening into Sunday morning, March 8 to 9, Mars will appear near the waxing gibbous Moon with the bright star Pollux (the brighter of the twin stars in the constellation Gemini) nearby. As evening twilight ends at 7:06 p.m. EST, Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 6 degrees to the lower left. As the Moon reaches its highest for the night 1.25 hours later at 8:22 p.m., Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 5.5 degrees to the upper left. By the time Mars sets on the northwestern horizon at 4:53 a.m., it will be 4 degrees to the lower left of the Moon and Pollux will be 3 degrees above the Moon.
      Sunday morning, March 9 Daylight Saving Time begins. Don’t forget to reset your clocks (if they don’t automatically set themselves) as we “spring forward” to Daylight Saving Time! For much of the U.S., 2 to 3 a.m. on March 9, 2025, might be a good hour for magical or fictional events (as it doesn’t actually exist).
      Tuesday evening into Wednesday morning, March 11 to 12 The bright star Regulus will appear close to the nearly full moon. As evening twilight ends at 8:09 p.m. EDT, Regulus will be 4 degrees to the lower right of the Moon. When the Moon reaches its highest for the night at 11:52 p.m., Regulus will be 3 degrees to the lower right. By the time morning twilight begins at 6:26 a.m., Regulus will be about one degree below the Moon.
      Wednesday morning, March 12 Saturn will be passing on the far side of the Sun as seen from Earth, called a conjunction. Because Saturn orbits outside of the orbit of Earth it will be shifting from the evening sky to the morning sky. Saturn will begin emerging from the glow of dawn on the eastern horizon in early April (depending upon viewing conditions).
      Wednesday evening, March 12 The planets Venus and Mercury will appear closest to each other low on the western horizon, 5.5 degrees apart. They will be about 5 degrees above the horizon as evening twilight ends at 8:10 p.m. EDT, and Mercury will set first 27 minutes later at 8:37 p.m.
      Friday morning, March 14: Full Moon After Next The full moon after next will be at 2:55 a.m. EDT. This will be on Thursday evening from Pacific Daylight Time and Mountain Standard Time westward to the international date line in the mid Pacific. The Moon will appear full for about three days around this time, from Wednesday evening into Saturday morning.
      Total Lunar Eclipse As the Moon passes opposite the Sun on March 14, it will move through Earth’s shadow, creating a total eclipse of the Moon. The Moon will begin entering the partial shadow Thursday night at 11:57 p.m., but the gradual dimming of the Moon will not be noticeable until it starts to enter the full shadow Friday morning at 1:09 a.m. The round shadow of Earth will gradually shift across the face of the Moon (from lower left to upper right) until the Moon is fully shaded beginning at 2:26 a.m.
      The period of full shadow, or total eclipse, will last about 65 minutes, reaching the greatest eclipse at 2:59 a.m. and ending at 3:31 a.m. Even though it will be in full shadow, the Moon will still be visible. The glow of all of the sunrises and sunsets on Earth will give the Moon a reddish-brown hue, sometimes called a “blood” Moon (although this name is also used for one of the full moons near the start of fall). From 3:31 until 4:48 a.m., the Moon will exit the full shadow of Earth, with the round shadow of Earth again shifting across the face of the Moon (from upper left to lower right). The Moon will leave the last of the partial shadow at 6 a.m. ending this eclipse. 
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Moons



      Solar System Exploration



      Planets


      View the full article
  • Check out these Videos

×
×
  • Create New...