Members Can Post Anonymously On This Site
Missing 411: This Navajo Park Ranger Reveals The Truth About What's Happening To People Inside These Parks
-
Similar Topics
-
By NASA
Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed.
A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.
“We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks.
“It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth.
Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Spot the Station app was developed in collaboration with the public through a series of crowdsourcing competitions.NASA In its 25th year of operations, the International Space Station continues to symbolize discovery and cooperation for the benefit of humanity. Since 2012, observers have interacted with the space station through NASA’s Spot the Station website, a web browser-based tool that includes interactive maps for users to track the station and find viewpoints closest to their location.
A decade after the website’s release, NASA sought to enhance public access to this capability with a mobile app. NASA released the Spot the Station app on IOS and Android in 2023. As of Dec. 2024, it has more than 770,000 users in 227 countries and territories around the globe, according to Ensemble, who NASA contracts to maintain support of the app.
Revamping the Spot the Station experience was more than just an opportunity for NASA to make improvements; it allowed NASA to gather direct input from users by involving them in the development of the new app. Space Operations web and platform lead, Allison Wolff, pitched the idea to publicly crowdsource the app’s development.
In 2022, Wolff and her team supported the release of three separate crowdsourcing competitions, where global communities were invited to design key components of the new Spot the Station app. Participants submitted functional designs, including an augmented reality component not offered on the web version and interfaces for screens such as login and sign-up windows. Multiple winners were awarded prizes totaling $8,550 across the three challenges.
As the former Innovation Strategist in NASA’s Center of Excellence for Collaborative Innovation, part of the agency’s Prizes, Challenges, and Crowdsourcing program, Wolff was well acquainted with the ingenuity and results that stem from public-private collaborations.
“NASA strives to incorporate inclusion and innovation into how we operate. We also collaborate with minds outside the agency because the best ideas can come from very surprising places,” said Wolff.
Not only were the winning designs used in the final product, but the development team gained valuable feedback and worldwide perspectives from everyone who participated in the competition.
“When you use the power of the crowd and get a consistent message about a component or an interface, that’s a good indicator of what is user-friendly,” said Wolff.
Crowdsourcing continues to enhance the app’s functionality, including translating the app into six languages, including Spanish, French, and German, thanks to user contributions. In addition, the app’s code is open source, enabling anyone to modify and use the code for their own projects and support the tool’s growth. NASA will continue to update and improve the app with feedback from the public.
Find more opportunities: www.nasa.gov/get-involved/
View the full article
-
By NASA
4 min read
NASA Open Science Reveals Sounds of Space
A composite image of the Crab Nebula features X-rays from Chandra (blue and white), optical data from Hubble (purple), and infrared data from Spitzer (pink). This image is one of several that can be experienced as a sonification through Chandra’s Universe of Sound project. X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech NASA has a long history of translating astronomy data into beautiful images that are beloved by the public. Through its Chandra X-ray Observatory and Universe of Learning programs, NASA brings that principle into the world of audio in a project known as “A Universe of Sound.” The team has converted openly available data from Chandra, supplemented by open data from other observatories, into dozens of “sonifications,” with more on the way.
Following the open science principle of accessibility, “A Universe of Sound” helps members of the public who are blind or low vision experience NASA data in a new sensory way. Sighted users also enjoy listening to the sonifications.
“Open science is this way to not just have data archives that are accessible and incredibly rich, but also to enhance the data outputs themselves,” said Dr. Kimberly Arcand, the visualization scientist and emerging technology lead at Chandra and member of NASA’s Universe of Learning who heads up the sonification team. “I want everybody to have the same type of access to this data that I do as a scientist. Sonification is just one of those steps.”
Data sonification of the Milky Way galactic center, made using data from NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope. While the Chandra telescope provides data in X-ray wavelengths for most of the sonifications, the team also took open data from other observatories to create a fuller picture of the universe. Types of data used to create some of the sonifications include visual and ultraviolet light from the Hubble Space Telescope, infrared and visual light from the James Webb Space Telescope, and infrared light from the now-retired Spitzer Space Telescope.
The sonification team, which includes astrophysicist Matt Russo, musician Andrew Santaguida (both of the SYSTEM Sounds project), consultant Christine Malec, and Dr. Arcand, assigned each wavelength of observation to a different musical instrument or synthesized sound to create a symphony of data. Making the separate layers publicly available was important to the team to help listeners understand the data better.
“It’s not just about accessibility. It’s also about reproducibility,” Arcand said. “We’re being very specific with providing all of the layers of sound, and then describing what those layers are doing to make it more transparent and obvious which steps were taken and what process of translation has occurred.”
For example, in a sonification of the supernova remnant Cassiopeia A, modified piano sounds represent X-ray data from Chandra, strings and brass represent infrared data from Webb and Spitzer, and small cymbals represent stars located via visual light data from Hubble.
Data sonification of the Cassiopeia A supernova remnant, made using data from NASA’s Chandra X-ray Observatory, James Webb Space Telescope, and Hubble Space Telescope. The team brought together people of various backgrounds to make the project a success – scientists to obtain and interpret the data, audio engineers to mix the sonifications, and members of the blind and low vision community to direct the product into something that brought a greater understanding of the data.
“Another benefit to open science is it tends to open those pathways of collaboration,” Arcand said. “We invite lots of different community members into the process to make sure we’re creating something that adds value, that adds to the greater good, and that makes the investment in the data worthwhile.”
A documentary about the sonifications called “Listen to the Universe” is hosted on NASA+. Visitors can listen to all the team’s sonifications, including the separate layers from each wavelength of observation, on the Universe of Sound website.
By Lauren Leese
Web Content Strategist for the Office of the Chief Science Data Officer
Share
Details
Last Updated Dec 17, 2024 Related Terms
Chandra X-Ray Observatory Galaxies Open Science Stars Explore More
7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
Article
2 days ago
2 min read Hubble Images a Grand Spiral
Article
5 days ago
6 min read Found: First Actively Forming Galaxy as Lightweight as Young Milky Way
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Launched in May 2024, ESA’s EarthCARE satellite is nearing the end of its commissioning phase with the release of its first data on clouds and aerosols expected early next year. In the meantime, an international team of scientists has found an innovative way of applying artificial intelligence to other satellite data to yield 3D profiles of clouds.
This is particularly news for those eagerly awaiting data from EarthCARE in their quest to advance climate science.
View the full article
-
By European Space Agency
On 1 December 2024, BepiColombo flew past Mercury for the fifth time. During this flyby, BepiColombo became the first spacecraft ever to observe Mercury in mid-infrared light. The new images reveal variations in temperature and composition across the planet's cratered surface.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.