Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Ice melting from glaciers around the world is depleting regional freshwater resources and driving global sea levels to rise at ever-faster rates.
      According to new findings, through an international effort involving 35 research teams, glaciers have been losing an average of 273 billion tonnes of ice per year since the year 2000 – but hidden within this average there has been an alarming increase over the last 10 years.
      View the full article
    • By NASA
      Credit: NASA NASA’s Small Spacecraft Systems Virtual Institute (S3VI) is pleased to announce the official release of the highly anticipated 2024 State-of-the-Art Small Spacecraft Technology report. This significant accomplishment was made possible by the contributions of numerous dedicated people across NASA who graciously supported the preparation of the document as authors and reviewers. We also want to extend our gratitude to all the companies, universities, and organizations that provided content for this report.
      The 2024 report can be found online at https://www.nasa.gov/smallsat-institute/sst-soa. The report is also available in PDF format as a single document containing all report content as well as individual chapters available on their respective chapter webpages. This 2024 edition reflects updates in several chapters to include: the Formation Flying and Rendezvous and Proximity Operations section within the “Guidance, Navigation, and Control” chapter; the Additive Manufacturing section within the “Structures, Materials, and Mechanisms” chapter; the Free Space Optical Communications section within the “Communications” chapter; and the Hosted Orbital Services section within the “Complete Spacecraft Platforms” chapter.
      As in previous editions, the report contains a general overview of current state-of-the-art SmallSat technologies and their development status as discussed in open literature. The report is not intended to be an exhaustive representation of all technologies currently available to the small spacecraft community, nor does the inclusion of technologies in the report serve as an endorsement by NASA. Sources of publicly available date commonly used as sources in the development of the report include manufacturer datasheets, press releases, conference papers, journal papers, public filings with government agencies, and news articles. Readers are highly encouraged to reach out to companies for further information regarding the performance and maturity of described technologies of interest. During the report’s development, companies were encouraged to release test information and flight data when possible so it may be appropriately captured. It should be noted that technology maturity designations may vary with change to payload, mission requirements, reliability considerations, and the associated test/flight environment in which performance was demonstrated.
      Suggestions or corrections to the 2024 report toward a subsequent edition, should be submitted to the NASA Small Spacecraft Systems Virtual Institute Agency-SmallSat-Institute@mail.nasa.gov for consideration prior to the publication of the future edition. When submitting suggestions or corrections, please cite appropriate publicly accessible references. Private correspondence is not considered an adequate reference. Efforts are underway for the 2025 report and organizations are invited to submit technologies for consideration for inclusion by August 1, 2025.
      NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds the Small Spacecraft Systems Virtual Institute. 
      View the full article
    • By NASA
      Ambiguity. 
      That’s the word that comes to mind when documentary photographers start each day at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      PACE mission photographer Denny Henry and lead documentary photographer Desiree Stover pose for selfies in the clean room.Credits: NASA “You walk in and think one thing is happening,” said OCI’s lead documentary photographer Desiree Stover. “But in an instant things change – maybe goes wrong –- and you need to be ready to capture it.”
      From build to testing to launch, one figure is always present in the background capturing the story of each Goddard mission – the documentary photographer. 
      In honor of #WorldPhotoDay, follow along as two of our documentarians share what it’s like to capture the story of Goddard’s latest mission build PACE. 
      PACE or Plankton, Aerosol, Cloud, ocean Ecosystem, is set to launch in early 2024. Its goal is to see ocean and atmosphere features in unparalleled detail. By measuring the intensity of the color that reflects from Earth’s ocean surface, PACE will capture fine details about tiny plant-like organisms and algae that live in the ocean, called phytoplankton, that are the basis of the marine food web and generate half of Earth’s oxygen. 
      Crafting the Story
      For Stover and her partner Denny Henry, PACE’s lead mission photographer, the story starts with the smallest details. 
      “I think one of the first things I photographed was the outside of a circuit port box. It was literally an empty metal box,” said Henry, who started photographing PACE in 2020, right before the pandemic. “It might be small, but it’s part of a system that’s going to do big things.”
      Mark Walter, David Kim, Melyane Ortiz-acosta, and Ariel Obaldo discuss plans for testing the PACE flight Solar Array Panels.Credits: NASA’s Goddard Space Flight Center/Denny Henry A typical day for these photographers usually starts with a morning meeting, assignments and getting ready. By the end of the day, the original plan has likely been changed, multiple times.
      “Some days we might shoot eight photos, other days it might be hundreds or more,” Stover said.
      PACE, or Plankton, Aerosol, Cloud, ocean Ecosystem, is set to launch in early 2024. Its goal is to see ocean and atmosphere features in unparalleled detail.Credits: NASA Images captured during shoots are used for a variety of things, especially technical components of the mission. This includes documenting builds, spotting mistakes and testing. 
      Stover got her start at Goddard by photographing NASA’s James Webb Space Telescope before switching to capturing imagery of Goddard’s small instruments, including PACE’s Ocean Color Instrument, or OCI. This advanced sensor will enable continuous measurement of light throughout the ultraviolet to shortwave infrared spectrum to better understand Earth’s ocean and atmosphere.
      She says she’s still in awe that her teammates trust her “eye.”
      “One of the most fascinating things about working here is that we have a specific job,” she said. “And even though engineers can pick up a camera and take photos, they don’t. They know we’re the experts at it. They trust our eyes to tell and capture the story.”
      Henry said one of the most memorable days he’s documented so far was watching the PACE team integrate the SPEXone instrument into the spacecraft. 
      “All the partners were there as I photographed. It was a big deal,” he said. “I captured every bolt all the way to the mounting. It’s important to get these details. Six months from now someone who wasn’t there might want to see what was done in what order.”
      Henry said that capturing images is only part of the job. For every hour of shooting, there’s also an hour spent processing and working with partners to ensure things were documented correctly.
      Playing Detective
      While telling the story is important, Stover says that part of the job is speaking up, especially when you notice something wrong.
      During one assignment documenting vibration testing, Stover noticed that OCI’s Earth shade looked different.
      “We took the bagging off and could see tape peeling off the radiator panels, possibly loose wires in certain places,” she said. “When I saw this, I thought back to what it was like when we shot this the first time.”
      Physical Science Technician Kristen Washington performs a contamination inspection of the OCI Flight Fold Flat Mirror optic.Credits: Desiree Stover, NASA Goddard It’s common for the photographers to shoot things twice to examine how things might change when in testing. When Stover saw the tape, she got to work ensuring her hunch was right. 
      She sent a series of images to the thermal team lead letting him know what she found. Plans were already underway to change the design.
      The unexpected
      Stover and Henry agree that documenting missions has come with some interesting experiences.
      Both had to undergo fall protection harness training in the event they had to climb around one of Goddard’s cleanrooms, something that happened to Stover during one assignment.
      “Once I was up in Building 29’s high bay. Like up at the very top in the crane rafters shooting. I never thought I was afraid of heights until that moment,” she said. “But I focused on the image and what task I was accomplishing and completed the assignment without issue.”
      Henry said adjusting to Covid-19 required a lot of flexibility, especially with sudden changes.
      “This is not a job you can do from home,” he said. “After a few months, we adapted.”
      Radio Frequency testing of the PACE Earth Coverage Antenna in the Electromagnetic Anechoic Chamber at Goddard Space Flight Center.Credits: NASA’s Goddard Space Flight Center/Denny Henry Henry said that many times mission teams will find that engineering drawings won’t match up with what was actually built. With the pandemic restrictions, PACE heavily relied on his images to note how things changed and why issues occurred. 
      As PACE heads toward big milestones in the next year, both Stover and Henry are excited to see their work come together, including the day of launch.
      They both agreed that photographing the teams involved in each aspect of PACE’s build is especially rewarding as they help create mementos that go along with their mission’s story. 
      By: Sara Blumberg
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      View the full article
    • By NASA
      2 min read
      Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
      Adventurous travellers aboard the Viking Octantis ship, sampling phytoplankton from  Danco Island in the Errera Channel for the FjordPhyto project. Allison Cusick FjordPhyto is a collective effort where travelers on tour expedition vessels in Antarctica help scientists at Scripps Institution of Oceanography and Universidad Nacional de La Plata study phytoplankton. Now project leader Dr. Allison Cusick has a Ph.D.! . Dr. Cusick studies how melting glaciers influence phytoplankton in the coastal regions. She wrote her doctoral dissertation based on the data collected by FjordPhyto volunteers.
      “Travelers adventure to the wild maritime climate of Antarctica and help collect samples from one of the most data-limited regions of the world,” said Cusick.  “While on vacation, they can volunteer to join a FjordPhyto science boat experience where they spend an hour collecting water measurements like salinity, temperature, chlorophyll-a, turbidity, as well as physical samples for molecular genetics work, microscopy identification, and carbon biomass estimates. It’s a full immersion into the ecosystem and the importance of polar research!”
      Cusick successfully defended her thesis on December 18, 2024, earning a Ph.D. in Oceanography from the Scripps Institution of Oceanography. Hers is the second Ph.D.  based on data from the FjordPhyto project. Martina Mascioni from FjordPhyto team earned her Ph.D. from the National University of La Plata (Argentina) in 2018.
      The project is a hit with travelers, too.
      “It’s incredibly inspiring to be part of a program like this that’s open to non-specialist involvement,” said one volunteer, a retired biology teacher aboard the Viking Octantis ship, who continued to say, “Thank you for letting us be a part of the science and explaining so clearly why it matters to the bigger picture.”
      If you would like to get involved, go to www.fjordphyto.org and reach out to the team!
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Feb 10, 2025 Related Terms
      Citizen Science Earth Science Oceans Explore More
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      4 days ago
      3 min read NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale


      Article


      6 days ago
      15 min read Summary of the 53rd U.S.–Japan ASTER Science Team Meeting


      Article


      3 weeks ago
      View the full article
    • By NASA
      7 min read
      Newly Selected Citizen Science Proposals: A Peek at What’s Next
      Last year, the NASA citizen science community saw a prize from the White House and two prizes from professional societies: one from the Division of Planetary Sciences and one from the American Astronomical Society. Our teams published two papers in the prestigious journal, Nature, one on a planetary crash and one about a distant world that seems to have auroras. 2024 was a year of 5000 comets, two solar eclipses and plenty of broken records.
      But we’re not stopping to rest on our laurels. In 2024, NASA selected 25 new citizen science proposals for funding that will lead to new projects and new results to look forward to in 2025 and beyond. Here’s a roundup of those selections and the principal investigators (PIs) of each team—a sneak peek at what’s coming next in NASA citizen science! Note that these investigations are research grants–some of them will result in new opportunities for the public, others will use results from earlier citizen science projects or develop new tools.
      Bright green glow observed from Texas on June 1, 2024, by Stephen Hummel. A new grant to the Spritacular project team will support citizen science research on this newly-discovered phenomenon. Stephen Hummel Citizen Science Seed Funding Program (CSSFP)
      The CSSFP aims to support scientists and other experts to develop citizen science projects and to expand the pool of scientists who use citizen science techniques in their science investigations. Four divisions of NASA’s Science Mission Directorate are participating in the CSSFP: the Astrophysics Division, the Biological and Physical Sciences Division, the Heliophysics Division, and the Planetary Science Division. Nine new investigations were recently selected through this program:
      Astrophysics Division
      SuPerPiG Observing Grid, PI Rachel Huchmala, Boise State University. Use a small telescope to monitor exoplanets to improve our knowledge of their orbits. Understanding the Nature of Clumpy Galaxies with Clump-Scout 2: a New Citizen-Science Project to Characterize Star-Forming Clumps in Nearby Galaxies. PI Claudia Scarlata, University of Minnesota. Label clumps of distant galaxies to help us understand Hubble Space Telescope data. ‘Backyard Worlds: Binaries’ — Discovering Benchmark Brown Dwarfs Through Citizen Science. PI Aaron Meisner, NSF’s NOIRLab. Search for planet-like objects called brown dwarfs that orbit nearby stars. Mobile Toolkits to Enable Transient Follow-up Observations by Amateur Astronomers. PI Michael Coughlin, University of Minnesota. Use your own telescope to observe supernovae, kilonovae and other massive explosions. Planetary Science Division
      A Citizen Scientist Approach to High Resolution Geologic Mapping of Intracrater Impact Melt Deposits as an input to Numerical Models, PI Kirby Runyon, Planetary Science Institute. Help map lunar craters so we can better understand how meteor impacts sculpt the moon’s surface. Identifying Active Asteroids in Public Datasets, PI Chad Trujillo, Northern Arizona University, Search for icy, comet-like bodies hiding in the asteroid belt using new data from the Canada-France-Hawaii telescope.  Heliophysics Division
      Enabling Magnetopause Observations With Informal Researchers (EMPOWR). PI Mo Wenil, Johns Hopkins University. Investigate plasma layers high above the Earth using data from NASA’s Magnetospheric Multiscale (MMS) mission and the Zooniverse platform. High-resolution Ionospheric Imaging using Dual-Frequency Smartphones. PI Josh Semeter, Boston University. Study the upper atmosphere using cell phone signals. Large Scale Structures Originating from the Sun (LASSOS) multi-point catalog: A citizen project connecting operations to research.  PI Cecelia Mac Cormack, Catholic University of America. Help build a catalog of structures on the Sun. Comet Identification and Image Annotation Modernization for the Sungrazer Citizen Science Project. PI Oliver Gerland. Search for comets in data from ESA and NASA’s Solar and Heliospheric Observatory (SOHO) mission using new web tools. Heliophysics Citizen Science Investigations (HCSI)
      The HCSI program supports medium-scale citizen science projects in the Heliophysics Division of NASA’s Science Mission Directorate.  Six investigations were recently selected through this program:
      Investigation of green afterglow observed above sprite and gigantic jet tops based on Spritacular project database, PI Burcu Kosar. Photograph electric phenomena above storm clouds to help us understand a newly discovered green glow and learn about atmospheric chemistry. Machine Learning competition for Solar Wind prediction in preparation of solar maximum. PI Enrico Camporeale, University of Colorado, Boulder. Take part in a competition to predict the speed of the solar wind using machine learning. A HamSCI investigation of the bottomside ionosphere during the 2023 annular and 2024 total solar eclipses. PI Gareth Perry, New Jersey Institute of Technology. Use Ham Radio data to investigate the effects of solar eclipses on the ionosphere. Dynamic footprint in mid-latitude mesospheric clouds. PI Chihiko Cullens,  University of Colorado, Boulder. Collect and analyze data on noctilucent clouds, rare high-altitude clouds that shine at night. Monitoring Solar Activity During Solar Cycle 25 with the GAVRT Solar Patrol Science and Education Program. PI Marin Anderson, Jet Propulsion Laboratory. Track solar activity during the period leading up to and including solar maximum. What is the total energy input to the heliosphere from solar jets? PI Nour Rawafi, The Johns Hopkins University Applied Physics Laboratory. Identify solar jets in images from the Solar Dynamics Observatory Citizen Science for Earth Systems Program (CSESP)  
      CSESP opportunities focus on developing and implementing projects that harness contributions from members of the general public to advance our understanding of Earth as a system. Proposals for the 2024 request were required to demonstrate a clear link between citizen science and NASA observation systems to advance the agency’s Earth science mission. Nine projects received funding.
      Engaging Citizen Scientists for Inclusive Earth Systems Monitoring, PI Duan Biggs, Northern Arizona University. Measure trees in tropical regions south of the equator with the GLOBE Observer App to improve models of vegetation structure and biomass models from NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission. Integrating Remote Sensing and Citizen Science to Support Conservation of Woodland Vernal Pools, PI Laura Bourgeau-Chavez, Michigan Technological University. Map and monitor shallow, seasonal wetlands in Michigan, Wisconsin and New York to better understand these key habitats of amphibians and other invertebrates. Citizen-Enabled Measurement of PM2.5 and Black Carbon: Addressing Local Inequities and Validating PM Composition from MAIA, Albert Presto/Carnegie Mellon University. Deploy sensors to measure sources of fine airborne particle pollution filling gaps in data from NASA’s Multi-Angle Imager for Aerosols (MAIA) mission. Expanding Citizen Science Hail Observations for Validation of NASA Satellite Algorithms and Understanding of Hail Melt, PI Russ Schumacher, Colorado State University. Measure the sizes and shapes of hailstones, starting in the southeastern United States, using photographs and special pads to help us understand microwave satellite data.  X-Snow: A Citizen-Science Proposal for Snow in the New York Area, PI, Marco Tedesco, Columbia University. Measure snow in the Catskill and Adirondacks regions of New York to help improve NASA’s models of snow depth and water content. Coupling Citizen Science and Remote Sensing Observations to Assess the Impacts of Icebergs on Coastal Arctic Ecosystems, PI, Maria Vernet, University of California, San Diego. Measure phytoplankton samples in polar regions to understand how icebergs and their meltwater affect phytoplankton concentration and biodiversity.  Forecasting Mosquito-Borne Disease Risk in a Changing Climate: Integrating GLOBE Citizen Science and NASA Earth System Modeling, PI Di Yang, University of Florida, Gainesville. Using data on mosquitoes from the GLOBE Observer App to predict future changes in mosquito-borne disease risk. Ozone Measurements from General Aviation: Supporting TEMPO Satellite Validation and Addressing Air Quality Issues in California’s San Joaquin Valley with Citizen Science, PI Emma Yates, NASA Ames Research Center. Deploy air-quality sensors around Bakersfield, California and compare the data to measurements from NASA’s Tropospheric Emissions Monitoring of Pollution instrument (TEMPO). Under the Canopy: Capturing the Role of Understory Phenology on Animal Communities Using Citizen Science, PI Benjamin Zuckerberg, University of Wisconsin, Madison. Measure snow depth, temperature, and sound in forest understories to improve satellite-based models of vegetation and snow cover for better modeling of wildlife communities.  For more information on citizen science awards from previous years, see articles from: 
      September 2023  August 2022 July 2021 For more information on NASA’s citizen science programs, visit https://science.nasa.gov/citizenscience.
      Share








      Details
      Last Updated Jan 13, 2025 Related Terms
      Citizen Science Explore More
      2 min read First NASA Neurodiversity Network Intern to Present at the American Geophysical Union Annual Conference


      Article


      3 days ago
      2 min read Science Done by Volunteers Highlighted at December’s American Geophysical Union Meeting


      Article


      3 weeks ago
      2 min read Jovian Vortex Hunters Spun Up Over New Paper


      Article


      4 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...