Members Can Post Anonymously On This Site
Change in the Arctic
-
Similar Topics
-
By Space Force
U.S. Air Force Lt. Gen. John DeGoes discusses transformative leadership and how it is rooted in purposeful communication, adaptability, and a commitment to the Air Force core values.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A digital rendering of the completed Axiom Station, which includes the Payload, Power, and Thermal Module, Habitat 1, an airlock, Habitat 2, and the Research and Manufacturing Facility.Credits: Axiom Space In coordination with NASA, Axiom Space modified its planned assembly sequence to accelerate its ability to operate as a viable free-flying space station and reduce International Space Station reliance during assembly.
NASA awarded Axiom Space a firm-fixed price, indefinite-delivery, indefinite-quantity contract in January 2020, as the agency continues to open the space station for commercial use. The contract provides insight into the development of at least one habitable commercial module to be attached to the space station with the goal of becoming a free-flying destination in low Earth orbit prior to retirement of the orbiting laboratory in 2030.
The initial Axiom Space plan was to launch and attach its first module, Habitat 1, to the space station, followed by three additional modules.
Under the company’s new assembly sequence, the Payload, Power, and Thermal Module will launch to the orbiting laboratory first, allowing it to depart as early as 2028 and become a free-flying destination known as Axiom Station. In free-flight, Axiom Space will continue assembly of the commercial destination, adding the Habitat 1 module, an airlock, Habitat 2 module, and the Research and Manufacturing Facility.
“The updated assembly sequence has been coordinated with NASA to support both NASA and Axiom Space needs and plans for a smooth transition in low Earth orbit,” said Angela Hart, manager, Commercial Low Earth Orbit Development Program at NASA’s Johnson Space Center in Houston. “The ongoing design and development of commercial destinations by our partners is critical to the agency’s plan to procure services in low Earth orbit to support our needs in microgravity.”
The revised assembly sequence will enable an earlier departure from the space station, expedite Axiom Station’s ability to support free-flight operations, and ensure the orbiting laboratory remains prepared for the U.S. Deorbit Vehicle and end of operational life no earlier than 2030.
“The International Space Station has provided a one-of-a-kind scientific platform for nearly 25 years,” said Dana Weigel, manager, International Space Station Program at NASA Johnson. “As we approach the end of space station’s operational life, it’s critically important that we look to the future of low Earth orbit and support these follow-on destinations to ensure we continue NASA’s presence in microgravity, which began through the International Space Station.”
NASA is supporting the design and development of multiple commercial space stations, including Axiom Station, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies.
NASA’s low Earth orbit microgravity strategy builds on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals. As the International Space Station nears the end of operations, NASA plans to transition to a new low Earth orbit model to continue leveraging microgravity benefits. Through commercial partnerships, NASA aims to maintain its leadership in microgravity research and ensure continued benefits for humanity.
Learn more about NASA’s low Earth orbit microgravity strategy at:
https://www.nasa.gov/leomicrogravitystrategy
News Media Contacts
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Keep Exploring Discover Related Topics
Low Earth Orbit Economy
Commercial Destinations in Low Earth Orbit
Commercial Space
International Space Station
View the full article
-
By European Space Agency
As Arctic temperatures rise, marine-terminating glaciers—especially in places like Svalbard—are undergoing rapid retreat and intensified calving.
The ESA-funded Space for Shore project utilises radar data from the Copernicus Sentinel-1 mission to provide precise, year-over-year insights into glacier retreat and calving intensity, particularly in areas like Kongsfjorden, where notable glaciers are experiencing significant retreat.
View the full article
-
By Space Force
This week the Department of Defense kicks off a three-year pilot program meant to reimburse service members up to $1,500 for travel-related expenses incurred for a temporary child care provider following a permanent change of station move.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This image, taken from a data visualization, shows Arctic sea ice minimum extent on September 11, 2024. The yellow boundary shows the minimum extent averaged over the 30-year period from 1981 to 2010. Download high-resolution video and images from NASA’s Scientific Visualization Studio: https://svsdev.gsfc.nasa.gov/5382NASA’s Scientific Visualization Studio/Trent L. Schindler Arctic sea ice retreated to near-historic lows in the Northern Hemisphere this summer, likely melting to its minimum extent for the year on Sept.11, 2024, according to researchers at NASA and the National Snow and Ice Data Center (NSIDC). The decline continues the decades-long trend of shrinking and thinning ice cover in the Arctic Ocean.
The amount of frozen seawater in the Arctic fluctuates during the year as the ice thaws and regrows between seasons. Scientists chart these swings to construct a picture of how the Arctic responds over time to rising air and sea temperatures and longer melting seasons. Over the past 46 years, satellites have observed persistent trends of more melting in the summer and less ice formation in winter.
This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024. According to the National Snow and Ice Data Center this is the 7th lowest in the satellite record). The decline continues the long-term trend of shrinking ice cover in the Arctic Ocean.
Credit: NASA’s Goddard Space Flight Center Tracking sea ice changes in real time has revealed wide-ranging impacts, from losses and changes in polar wildlife habitat to impacts on local communities in the Arctic and international trade routes.
This year, Arctic sea ice shrank to a minimal extent of 1.65 million square miles (4.28 million square kilometers). That’s about 750,000 square miles (1.94 million square kilometers) below the 1981 to 2010 end-of-summer average of 2.4 million square miles (6.22 million square kilometers). The difference in ice cover spans an area larger than the state of Alaska. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.
Seventh-Lowest in Satellite Record
This year’s minimum remained above the all-time low of 1.31 million square miles (3.39 million square kilometers) set in September 2012. While sea ice coverage can fluctuate from year to year, it has trended downward since the start of the satellite record for ice in the late 1970s. Since then, the loss of sea ice has been about 30,000 square miles (77,800 square kilometers) per year, according to NSIDC.
Scientists currently measure sea ice extent using data from passive microwave sensors aboard satellites in the Defense Meteorological Satellite Program, with additional historical data from the Nimbus-7 satellite, jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA).
Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,
Nathan Kurtz
Chief, NASA's Cryospheric Sciences Laboratory
Sea ice is not only shrinking, it’s getting younger, noted Nathan Kurtz, lab chief of NASA’s Cryospheric Sciences Laboratory at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
“Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,” Kurtz said.
Ice thickness measurements collected with spaceborne altimeters, including NASA’s ICESat and ICESat-2 satellites, have found that much of the oldest, thickest ice has already been lost. New research out of NASA’s Jet Propulsion Laboratory in Southern California shows that in the central Arctic, away from the coasts, fall sea ice now hovers around 4.2 feet (1.3 meters) thick, down from a peak of 8.8 feet (2.7 meters) in 1980.
Another Meager Winter Around Antarctica
Sea ice in the southern polar regions of the planet was also low in 2024. Around Antarctica, scientists are tracking near record-low sea ice at a time when it should have been growing extensively during the Southern Hemisphere’s darkest and coldest months.
Ice around the continent is on track to be just over 6.6 million square miles (16.96 million square kilometers). The average maximum extent between 1981 and 2010 was 7.22 million square miles (18.71 million square kilometers).
The meager growth so far in 2024 prolongs a recent downward trend. Prior to 2014, sea ice in the Antarctic was increasing slightly by about 1% per decade. Following a spike in 2014, ice growth has fallen dramatically. Scientists are working to understand the cause of this reversal. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change.
“While changes in sea ice have been dramatic in the Arctic over several decades, Antarctic sea ice was relatively stable. But that has changed,” said Walt Meier, a sea ice scientist at NSIDC. “It appears that global warming has come to the Southern Ocean.”
In both the Arctic and Antarctic, ice loss compounds ice loss. This is due to the fact that while bright sea ice reflects most of the Sun’s energy back to space, open ocean water absorbs 90% of it. With more of the ocean exposed to sunlight, water temperatures rise, further delaying sea ice growth. This cycle of reinforced warming is called ice-albedo feedback.
Overall, the loss of sea ice increases heat in the Arctic, where temperatures have risen about four times the global average, Kurtz said.
About the Author
Sally Younger
Senior Science Writer
Share
Details
Last Updated Sep 24, 2024 LocationGoddard Space Flight Center Related Terms
Earth Ice & Glaciers Explore More
4 min read NASA Helps Build New Federal Sea Level Rise Website
Article 27 mins ago 4 min read NASA Data Helps Protect US Embassy Staff from Polluted Air
United States embassies and consulates, along with American citizens traveling and living abroad, now have…
Article 4 days ago 4 min read Going Back-to-School with NASA Data
Article 1 week ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.