Members Can Post Anonymously On This Site
Landing NASA's perseverance rover safely on Mars
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A NASA F/A-18 research aircraft flies above California near NASA’s Armstrong Flight Research Center in Edwards, California, testing a commercial precision landing technology for future space missions. The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of the aircraft.NASA Nestled in a pod under an F/A-18 Hornet aircraft wing, flying above California, and traveling up to the speed of sound, NASA put a commercial sensor technology to the test. The flight tests demonstrated the sensor accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars.
The Psionic Space Navigation Doppler Lidar (PSNDL) system is rooted in NASA technology that Psionic, Inc. of Hampton, Virginia, licensed and further developed. They miniaturized the NASA technology, added further functionality, and incorporated component redundancies that make it more rugged for spaceflight. The PSNDL navigation system also includes cameras and an inertial measurement unit to make it a complete navigation system capable of accurately determining a vehicle’s position and velocity for precision landing and other spaceflight applications.
NASA engineers and technicians install the Psionic Space Navigation Doppler Lidar (PSNDL) system into a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA The aircraft departed from NASA’s Armstrong Flight Research Center in Edwards, California, and conducted a variety of flight paths over several days in February 2025. It flew a large figure-8 loop and conducted several highly dynamic maneuvers over Death Valley, California, to collect navigation data at various altitudes, velocities, and orientations relevant for lunar and Mars entry and descent. Refurbished for these tests, the NASA F/A-18 pod can support critical data collection for other technologies and users at a low cost.
Doppler Lidar sensors provide a highly accurate measurement of speed by measuring the frequency shift between laser light emitted from the sensor reflected from the ground. Lidar are extremely useful in sunlight-challenged areas that may have long shadows and stark contrasts, such as the lunar South Pole. Pairing PSNDL with cameras adds the ability to visually compare pictures with surface reconnaissance maps of rocky terrain and navigate to landing at interesting locations on Mars. All the data is fed into a computer to make quick, real-time decisions to enable precise touchdowns at safe locations.
Psionic Space Navigation Doppler Lidar (PSNDL) system installed in a testing pod on a NASA F/A-18 research aircraft ahead of February 2025 flight tests at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Since licensing NDL in 2016, Psionic has received funding and development support from NASA’s Space Technology Mission Directorate through its Small Business Innovative Research program and Tipping Point initiative. The company has also tested PSNDL prototypes on suborbital vehicles via the Flight Opportunities program. In 2024, onboard a commercial lunar lander, NASA successfully demonstrated the predecessor NDL system developed by the agency’s Langley Research Center in Hampton, Virginia.
Explore More
4 min read NASA Starling and SpaceX Starlink Improve Space Traffic Coordination
Article 10 mins ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 36 mins ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 20 hours ago Facebook logo @NASATechnology @NASA_Technology Share
Details
Last Updated Mar 26, 2025 EditorLoura Hall Related Terms
Armstrong Flight Research Center Game Changing Development Program Space Communications Technology Space Technology Mission Directorate Technology Technology for Living in Space Technology for Space Travel View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
At left is NASA’s Perseverance Mars rover, with a circle indicating the location of the calibration target for the rover’s SHERLOC instrument. At right is a close-up of the calibration target. Along the bottom row are five swatches of spacesuit materials that scientists are studying as they de-grade.NASA/JPL-Caltech/MSSS The rover carries several swatches of spacesuit materials, and scientists are assessing how they’ve held up after four years on the Red Planet.
NASA’s Perseverance rover landed on Mars in 2021 to search for signs of ancient microbial life and to help scientists understand the planet’s climate and geography. But another key objective is to pave the way for human exploration of Mars, and as part of that effort, the rover carries a set of five spacesuit material samples. Now, after those samples have endured four years of exposure on Mars’ dusty, radiation-soaked surface, scientists are beginning the next phase of studying them.
The end goal is to predict accurately the usable lifetime of a Mars spacesuit. What the agency learns about how the materials perform on Mars will inform the design of future spacesuits for the first astronauts on the Red Planet.
This graphic shows an illustration of a prototype astronaut suit, left, along with suit samples included aboard NASA’s Perseverance rover. They are the first spacesuit materials ever sent to Mars. NASA “This is one of the forward-looking aspects of the rover’s mission — not just thinking about its current science, but also about what comes next,” said planetary scientist Marc Fries of NASA’s Johnson Space Center in Houston, who helped provide the spacesuit materials. “We’re preparing for people to eventually go and explore Mars.”
The swatches, each three-quarters of an inch square (20 millimeters square), are part of a calibration target used to test the settings of SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), an instrument on the end of Perseverance’s arm.
The samples include a piece of polycarbonate helmet visor; Vectran, a cut-resistant material used for the palms of astronaut gloves; two kinds of Teflon, which has dust-repelling nonstick properties; and a commonly used spacesuit material called Ortho-Fabric. This last fabric features multiple layers, including Nomex, a flame-resistant material found in firefighter outfits; Gore-Tex, which is waterproof but breathable; and Kevlar, a strong material used in bulletproof vests that makes spacesuits more rip-resistant.
Martian Wear and Tear
Mars is far from hospitable. It has freezing temperatures, fine dust that can stick to solar panels and spacesuits (causing wear and tear on the latter), and a surface rife with perchlorates, a kind of corrosive salt that can be toxic to humans.
There’s also lots of solar radiation. Unlike Earth, which has a magnetic field that deflects much of the Sun’s radiation, Mars lost its magnetic field billions of years ago, followed by much of its atmosphere. Its surface has little protection from the Sun’s ultraviolet light (which is why researchers have looked into how rock formations and caves could provide astronauts some shielding).
“Mars is a really harsh, tough place,” said SHERLOC science team member Joby Razzell Hollis of the Natural History Museum in London. “Don’t underestimate that — the radiation in particular is pretty nasty.”
Razzell Hollis was a postdoctoral fellow at NASA’s Jet Propulsion Laboratory in Southern California from 2018 to 2021, where he helped prepare SHERLOC for arrival on Mars and took part in science operations once the rover landed. A materials scientist, Razzell Hollis has previously studied the chemical effects of sunlight on a new kind of solar panel made from plastic, as well as on plastic pollution floating in the Earth’s oceans.
He likened those effects to how white plastic lawn chairs become yellow and brittle after years in sunlight. Roughly the same thing happens on Mars, but the weathering likely happens faster because of the high exposure to ultraviolet light there.
The key to developing safer spacesuit materials will be understanding how quickly they would wear down on the Martian surface. About 50% of the changes SHERLOC witnessed in the samples happened within Perseverance’s first 200 days on Mars, with the Vectran appearing to change first.
Another nuance will be figuring out how much solar radiation different parts of a spacesuit will have to withstand. For example, an astronaut’s shoulders will be more exposed — and likely encounter more radiation — than his or her palms.
Next Steps
The SHERLOC team is working on a science paper detailing initial data on how the samples have fared on Mars. Meanwhile, scientists at NASA Johnson are eager to simulate that weathering in special chambers that mimic the carbon dioxide atmosphere, air pressure, and ultraviolet light on the Martian surface. They could then compare the results generated on Earth while putting the materials to the test with those seen in the SHERLOC data. For example, the researchers could stretch the materials until they break to check if they become more brittle over time.
“The fabric materials are designed to be tough but flexible, so they protect astronauts but can bend freely,” Fries said. “We want to know the extent to which the fabrics lose their strength and flexibility over time. As the fabrics weaken, they can fray and tear, allowing a spacesuit to leak both heat and air.”
More About Perseverance
A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet, and is the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
For more about Perseverance:
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Share
Details
Last Updated Mar 26, 2025 Related Terms
Perseverance (Rover) Johnson Space Center Mars Mars 2020 Radioisotope Power Systems (RPS) Explore More
3 min read Engineering Reality: Lee Bingham Leads Lunar Surface Simulation Support for Artemis Campaign
Article 2 days ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on…
Article 2 days ago 3 min read 50 Years Ago: Final Saturn Rocket Rolls Out to Launch Pad 39
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA Technicians do final checks on NASA’s Spirit rover in this image from March 28, 2003. The rover – and its twin, Opportunity – studied the history of climate and water at sites on Mars where conditions may once have been favorable to life. Each rover is about the size of a golf cart and seven times heavier (about 405 pounds or 185 kilograms) than the Sojourner rover launched on the Mars Pathfinder to Mars mission in 1996.
Spirit and Opportunity were sent to opposite sides of Mars to locations that were suspected of having been affected by liquid water in the past. Spirit was launched first, on June 10, 2003. Spirit landed on the Martian surface on Jan. 3, 2004, about 8 miles (13.4 kilometers) from the planned target and inside the Gusev crater. The site became known as Columbia Memorial Station to honor the seven astronauts killed when the space shuttle Columbia broke apart Feb. 1, 2003, as it returned to Earth. The plaque commemorating the STS-107 Space Shuttle Columbia crew can be seen in the image above.
Spirit operated for 6 years, 2 months, and 19 days, more than 25 times its original intended lifetime, traveling 4.8 miles (7.73 kilometers) across the Martian plains.
Image credit: NASA
View the full article
-
By European Space Agency
As ESA’s Hera planetary defence mission flew past planet Mars it autonomously locked onto dozens of impact craters and other prominent surface features to track them over time, in a full-scale test of the self-driving technology that the spacecraft will employ to navigate around its target asteroids.
View the full article
-
By NASA
Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on the Red Planet to date. The finding, published Monday in the Proceedings of the National Academy of Sciences, suggests prebiotic chemistry may have advanced further on Mars than previously observed.
Scientists probed an existing rock sample inside Curiosity’s Sample Analysis at Mars (SAM) mini-lab and found the molecules decane, undecane, and dodecane. These compounds, which are made up of 10, 11, and 12 carbons, respectively, are thought to be the fragments of fatty acids that were preserved in the sample. Fatty acids are among the organic molecules that on Earth are chemical building blocks of life.
Living things produce fatty acids to help form cell membranes and perform various other functions. But fatty acids also can be made without life, through chemical reactions triggered by various geological processes, including the interaction of water with minerals in hydrothermal vents.
While there’s no way to confirm the source of the molecules identified, finding them at all is exciting for Curiosity’s science team for a couple of reasons.
Curiosity scientists had previously discovered small, simple organic molecules on Mars, but finding these larger compounds provides the first evidence that organic chemistry advanced toward the kind of complexity required for an origin of life on Mars.
This graphic shows the long-chain organic molecules decane, undecane, and dodecane. These are the largest organic molecules discovered on Mars to date. They were detected in a drilled rock sample called “Cumberland” that was analyzed by the Sample Analysis at Mars lab inside the belly of NASA’s Curiosity rover. The rover, whose selfie is on the right side of the image, has been exploring Gale Crater since 2012. An image of the Cumberland drill hole is faintly visible in the background of the molecule chains. NASA/Dan Gallagher The new study also increases the chances that large organic molecules that can be made only in the presence of life, known as “biosignatures,” could be preserved on Mars, allaying concerns that such compounds get destroyed after tens of millions of years of exposure to intense radiation and oxidation.
This finding bodes well for plans to bring samples from Mars to Earth to analyze them with the most sophisticated instruments available here, the scientists say.
“Our study proves that, even today, by analyzing Mars samples we could detect chemical signatures of past life, if it ever existed on Mars,” said Caroline Freissinet, the lead study author and research scientist at the French National Centre for Scientific Research in the Laboratory for Atmospheres and Space Observations in Guyancourt, France
In 2015, Freissinet co-led a team that, in a first, conclusively identified Martian organic molecules in the same sample that was used for the current study. Nicknamed “Cumberland,” the sample has been analyzed many times with SAM using different techniques.
NASA’s Curiosity rover drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior. Curiosity used the Mars Hand Lens Imager camera on the rover’s arm to capture this view of the hole in Cumberland on the same sol as the hole was drilled. The diameter of the hole is about 0.6 inches. The depth of the hole is about 2.6 inches. NASA/JPL-Caltech/MSSS Curiosity drilled the Cumberland sample in May 2013 from an area in Mars’ Gale Crater called “Yellowknife Bay.” Scientists were so intrigued by Yellowknife Bay, which looked like an ancient lakebed, they sent the rover there before heading in the opposite direction to its primary destination of Mount Sharp, which rises from the floor of the crater.
The detour was worth it: Cumberland turns out to be jam-packed with tantalizing chemical clues to Gale Crater’s 3.7-billion-year past. Scientists have previously found the sample to be rich in clay minerals, which form in water. It has abundant sulfur, which can help preserve organic molecules. Cumberland also has lots of nitrates, which on Earth are essential to the health of plants and animals, and methane made with a type of carbon that on Earth is associated with biological processes.
Perhaps most important, scientists determined that Yellowknife Bay was indeed the site of an ancient lake, providing an environment that could concentrate organic molecules and preserve them in fine-grained sedimentary rock called mudstone.
“There is evidence that liquid water existed in Gale Crater for millions of years and probably much longer, which means there was enough time for life-forming chemistry to happen in these crater-lake environments on Mars,” said Daniel Glavin, senior scientist for sample return at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a study co-author.
The recent organic compounds discovery was a side effect of an unrelated experiment to probe Cumberland for signs of amino acids, which are the building blocks of proteins. After heating the sample twice in SAM’s oven and then measuring the mass of the molecules released, the team saw no evidence of amino acids. But they noticed that the sample released small amounts of decane, undecane, and dodecane.
Because these compounds could have broken off from larger molecules during heating, scientists worked backward to figure out what structures they may have come from. They hypothesized these molecules were remnants of the fatty acids undecanoic acid, dodecanoic acid, and tridecanoic acid, respectively.
The scientists tested their prediction in the lab, mixing undecanoic acid into a Mars-like clay and conducting a SAM-like experiment. After being heated, the undecanoic acid released decane, as predicted. The researchers then referenced experiments already published by other scientists to show that the undecane could have broken off from dodecanoic acid and dodecane from tridecanoic acid.
The authors found an additional intriguing detail in their study related to the number of carbon atoms that make up the presumed fatty acids in the sample. The backbone of each fatty acid is a long, straight chain of 11 to 13 carbons, depending on the molecule. Notably, non-biological processes typically make shorter fatty acids, with less than 12 carbons.
It’s possible that the Cumberland sample has longer-chain fatty acids, the scientists say, but SAM is not optimized to detect longer chains.
Scientists say that, ultimately, there’s a limit to how much they can infer from molecule-hunting instruments that can be sent to Mars. “We are ready to take the next big step and bring Mars samples home to our labs to settle the debate about life on Mars,” said Glavin.
This research was funded by NASA’s Mars Exploration Program. Curiosity’s Mars Science Laboratory mission is led by NASA’s Jet Propulsion Laboratory in Southern California; JPL is managed by Caltech for NASA. SAM (Sample Analysis at Mars) was built and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. CNES (the French Space Agency) funded and provided the gas chromatograph subsystem on SAM. Charles Malespin is SAM’s principal investigator.
By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
-
Similar Videos
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.