Members Can Post Anonymously On This Site
28th October - Massive X1 Solar Flare - Close Up Images! 4K
-
Similar Topics
-
By European Space Agency
Year in images 2024
Our year through the lens: a selection of our favourite images for 2023
View the full article
-
By NASA
Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read
Hubble Images a Grand Spiral
This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 5643. ESA/Hubble & NASA, A. Riess, D. Thilker, D. De Martin (ESA/Hubble), M. Zamani (ESA/Hubble) This NASA/ESA Hubble Space Telescope image features the glorious spiral galaxy NGC 5643, which is located roughly 40 million light-years away in the constellation Lupus, the Wolf. NGC 5643 is a grand design spiral, which refers to the galaxy’s symmetrical form with two large, winding spiral arms that are clearly visible. Bright-blue stars define the galaxy’s spiral arms, along with lacy reddish-brown dust clouds and pink star-forming regions.
As fascinating as the galaxy appears at visible wavelengths, some of NGC 5643’s most interesting features are invisible to the human eye. Ultraviolet and X-ray images and spectra of NGC 5643 show that the galaxy hosts an active galactic nucleus: an especially bright galactic core powered by a feasting supermassive black hole. When a supermassive black hole ensnares gas from its surroundings, the gas collects in a disk that heats up to hundreds of thousands of degrees. The superheated gas shines brightly across the electromagnetic spectrum, but especially at X-ray wavelengths.
NGC 5643’s active galactic nucleus isn’t the brightest source of X-rays in the galaxy, though. Researchers using ESA’s XMM-Newton discovered an even brighter X-ray-emitting object, called NGC 5643 X-1, on the galaxy’s outskirts. What could be a more powerful source of X-rays than a supermassive black hole? Surprisingly, the answer appears to be a much smaller black hole! While the exact identity of NGC 5643 X-1 is unknown, evidence points to a black hole that is about 30 times more massive than the Sun. Locked in an orbital dance with a companion star, the black hole ensnares gas from its stellar companion, creating a superheated disk that outshines the NGC 5643’s galactic core.
NGC 5643 was also the subject of a previous Hubble image. The new image incorporates additional wavelengths of light, including the red color that is characteristic of gas heated by massive young stars.
Explore More
Hubble’s Galaxies
Science Behind the Discoveries: Black Holes
Hubble’s Black Holes
Hubble Focus E-Book: Galaxies through Space and Time
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Dec 12, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Hubble Posters
Hubble by the Numbers
View the full article
-
By NASA
5 Min Read Scientists Share Early Results from NASA’s Solar Eclipse Experiments
On April 8, 2024, a total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. This photo was taken from Dallas, Texas. Credits:
NASA/Keegan Barber On April 8, 2024, a total solar eclipse swept across North America, from the western shores of Mexico, through the United States, and into northeastern Canada. For the eclipse, NASA helped fund numerous research projects and called upon citizen scientists in support of NASA’s goal to understand how our home planet is affected by the Sun – including, for example, how our star interacts with Earth’s atmosphere and affects radio communications.
At a press briefing on Tuesday, Dec. 10, scientists attending the annual meeting of the American Geophysical Union in Washington, D.C., reported some early results from a few of these eclipse experiments.
“Scientists and tens of thousands of volunteer observers were stationed throughout the Moon’s shadow,” said Kelly Korreck, eclipse program manager at NASA Headquarters in Washington. “Their efforts were a crucial part of the Heliophysics Big Year – helping us to learn more about the Sun and how it affects Earth’s atmosphere when our star’s light temporarily disappears from view.”
Changes in the Corona
On April 8, the Citizen CATE 2024 (Continental-America Telescopic Eclipse) project stationed 35 observing teams from local communities from Texas to Maine to capture images of the Sun’s outer atmosphere, or corona, during totality. Their goal is to see how the corona changed as totality swept across the continent.
On Dec. 10, Sarah Kovac, the CATE project manager at the Southwest Research Institute in Boulder, Colorado, reported that, while a few teams were stymied by clouds, most observed totality successfully — collecting over 47,000 images in all.
These images were taken in polarized light, or light oriented in different directions, to help scientists better understand the processes that shape the corona.
This preliminary movie from the Citizen CATE 2024 project stitches together polarized images of the solar corona taken from different sites during the total solar eclipse on April 8, 2024. SwRI/Citizen CATE 2024/Dan Seaton/Derek Lamb Kovac shared the first cut of a movie created from these images. The project is still stitching together all the images into the final, hour-long movie, for release at a later time.
“The beauty of CATE 2024 is that we blend cutting-edge professional science with community participants from all walks of life,” Kovac said. “The dedication of every participant made this project possible.”
Meanwhile, 50,000 feet above the ground, two NASA WB-57 aircraft chased the eclipse shadow as it raced across the continent, observing above the clouds and extending their time in totality to approximately 6 minutes and 20 seconds.
On board were cameras and spectrometers (instruments that analyze different wavelengths of light) built by multiple research teams to study the corona.
This image of the total solar eclipse is a combination of 30 50-millisecond exposures taken with a camera mounted on one of NASA’s WB-57 aircraft on April 8, 2024. It was captured in a wavelength of light emitted by ionized iron atoms called Fe XIV. This emission highlights electrified gas, called plasma, at a specific temperature (around 3.2 million degrees Fahrenheit) that often reveals arch-like structures in the corona. B. Justen, O. Mayer, M. Justen, S. Habbal, and M. Druckmuller On Dec. 10, Shadia Habbal of the University of Hawaii, who led one of the teams, reported that their instruments collected valuable data, despite one challenge. Cameras they had mounted on the aircraft’s wings experienced unexpected vibrations, which caused some of the images to be slightly blurred.
However, all the cameras captured detailed images of the corona, and the spectrometers, which were located in the nose of the aircraft, were not affected. The results were so successful, scientists are already planning to fly similar experiments on the aircraft again.
“The WB-57 is a remarkable platform for eclipse observations that we will try to capitalize on for future eclipses,” Habbal said.
Affecting the Atmosphere
On April 8, amateur or “ham” radio operators sent and received signals to one another before, during, and after the eclipse as part of the Ham Radio Science Citizen Investigation (HamSCI) Festivals of Eclipse Ionospheric Science. More than 6,350 amateur radio operators generated over 52 million data points to observe how the sudden loss of sunlight during totality affects their radio signals and the ionosphere, an electrified region of Earth’s upper atmosphere.
Students from Case Western Reserve University operate radios during the 2024 total solar eclipse. HamSCI/Case Western Reserve University Radio communications inside and outside the path of totality improved at some frequencies (from 1-7 MHz), showing there was a reduction in ionospheric absorption. At higher frequencies (10 MHz and above), communications worsened.
Results using another technique, which bounced high-frequency radio waves (3-30 MHz) off the ionosphere, suggests that the ionosphere ascended in altitude during the eclipse and then descended to its normal height afterward.
“The project brings ham radio operators into the science community,” said Nathaniel Frissell, a professor at the University of Scranton in Pennsylvania and lead of HamSCI. “Their dedication to their craft made this research possible.”
Also looking at the atmosphere, the Nationwide Eclipse Ballooning Project organized student groups across the U.S. to launch balloons into the shadow of the Moon as it crossed the country in April 2024 and during a solar eclipse in October 2023. Teams flew weather sensors and other instruments to study the atmospheric response to the cold, dark shadow.
The eclipse’s shadow was captured from a camera aboard Virginia Tech’s balloon as part of the Nationwide Eclipse Ballooning Project on April 8, 2024. Nationwide Eclipse Ballooning Project/Virginia Tech This research, conducted by over 800 students, confirmed that eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. Just as waves form in a lake when water is disturbed, these waves also form in the atmosphere when air is disturbed. This project, led by Angela Des Jardins of Montana State University in Bozeman, also confirmed the presence of these waves during previous solar eclipses. Scientists think the trigger for these waves is a “hiccup” in the tropopause, a layer in Earth’s atmosphere, similar to an atmospheric effect that is observed during sunset.
“Half of the teams had little to no experience ballooning before the project,” said Jie Gong, a team science expert and atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But their hard work and research was vital in this finding.”
By Abbey Interrante and Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Dec 10, 2024 Related Terms
2024 Solar Eclipse Citizen Science Goddard Space Flight Center Heliophysics Solar Eclipses The Sun Uncategorized Explore More
8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets
Article
21 hours ago
3 min read Annual Science Conference to Highlight NASA Research
Article
4 days ago
2 min read Hubble Spots a Spiral in the Celestial River
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Less than a week after its launch, the Copernicus Sentinel-1C satellite has delivered its first radar images of Earth – offering a glimpse into its capabilities for environmental monitoring. These initial images feature regions of interest, including Svalbard in Norway, the Netherlands, and Brussels, Belgium.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.