Members Can Post Anonymously On This Site
Permafrost thaw could release bacteria and viruses
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronaut Jeanette Epps extracts DNA samples from bacteria colonies for genomic analysis aboard the International Space Station’s Harmony module.NASA In an effort to learn more about astronaut health and the effects of space on the human body, NASA is conducting a new experiment aboard the International Space Station to speed up the detection of antibiotic-resistant bacteria, thus improving the health safety not only of astronauts but patients back on Earth.
Infections caused by antibiotic-resistant bacteria can be difficult or impossible to treat, making antibiotic resistance a leading cause of death worldwide and a global health concern.
Future astronauts visiting the Moon or Mars will need to rely on a pre-determined supply of antibiotics in case of illness. Ensuring those antibiotics remain effective is an important safety measure for future missions.
The Genomic Enumeration of Antibiotic Resistance in Space (GEARS) experiment, which is managed by NASA’s Ames Research Center in California’s Silicon Valley, involves astronauts swabbing interior surfaces across the space station and testing those samples for evidence of antibiotic-resistant bacteria, and in particular Enterococcus faecalis, a type of bacteria commonly found in the human body. The experiment is the first step in a series of work that seeks to better understand how organisms grow in a space environment, and how those similarities and differences might help improve research back on Earth.
“Enterococcus is a type of organism that’s been with us since our ancestors crawled out of the ocean, and is a core member of the human gut,” said Christopher Carr, assistant professor at the Georgia Institute of Technology and co-principal investigator of GEARS. “It’s able to survive inside and outside of its host, which has allowed it to become the second highest leading cause of hospital-acquired infections. We want to understand how this type of organism is adapting to the space environment.”
The GEARS experiment seeks to improve the detection and identification of these bacteria, building on existing efforts to understand what organisms grow on the station’s surfaces.
“We’ve been monitoring the surfaces of the space station since 2000, but this experiment will give us insight beyond the identities of present organisms, which is currently all that is used for risk assessment,” said Sarah Wallace, a microbiologist at NASA’s Johnson Space Center in Houston and co-principal investigator of GEARS. “With the station orbiting close to Earth, it’s a low-risk space to evaluate and learn more about the frequency of this bacteria and how it responds to the space environment so we can apply this understanding to missions to the Moon and Mars, where resupplies are more complex.”
Over the next year, astronauts will swab parts of the station and analyze samples by adding an antibiotic to the medium in which the samples will grow. The results will reveal where this and other resistant bacteria are growing and whether they can persist or spread across the station.
I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.
Sarah WAllace
NASA Microbiologist
The experiment was originally launched to the ISS on the 30th SpaceX commercial resupply services (CRS) mission in March 2024, and the first round of GEARS testing turned up surprising results: very few resistant bacteria colonies, none of which were E. faecalis. This bodes well for the threat of antibiotic resistance in space.
“There was some cleaning done before swabbing the station, which may have removed some bacteria,” said Carr. To better understand how and where risky bacteria may live, the astronauts paused some cleaning before the second round of swabbing.
“We want the astronauts to have a clean environment, but we also want to test those high-touch areas, so they intentionally and briefly avoided cleaning some areas so we can understand how bacteria may grow or spread on the station.”
This experiment is the first study to perform metagenomic sequencing in space, a method that analyzes all the genetic material in a sample to identify and characterize all organisms that are present, an important research and medical diagnostic capability for future deep space missions.
The GEARS team hopes to create a rapid workflow to analyze bacteria samples, reducing the time between swabbing and test results from days to hours. That workflow could be applied in hospitals and make a huge impact when treating hospital-acquired infections from antibiotic-resistant microbes.
The result could save lives – more than 35,000 people die each year as a result of antibiotic-resistant infections. The issue is personal to Wallace, who lost a family member to a hospital-acquired infection.
“It’s not that uncommon: so many people have experienced this kind of loss,” said Wallace. “A method to give an answer in a matter of hours is huge and profound. It’s my job to keep the crew healthy, but we’re also passionate about bringing that work back down to Earth. I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.”
Genomic Enumeration of Antibiotic Resistance in Space (GEARS) was funded by the Biological and Physical Sciences Space Biology Program, with pioneering funding and support from the Mars Campaign office.
Share
Details
Last Updated Feb 19, 2025 Related Terms
International Space Station (ISS) Ames Research Center Biological & Physical Sciences Explore More
2 min read 2024 Annual Highlights of Results from the International Space Station Science
Article 1 day ago 2 min read Station Science Top News: Feb. 14, 2025
Article 1 day ago 5 min read NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response
Article 6 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes.
“A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify.
Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
“How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.”
Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies.
Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration.
Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
“You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.”
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Modular Assembled Radiators for Nuclear Electric Propulsion Vehicles, or MARVL, aims to take a critical element of nuclear electric propulsion, its heat dissipation system, and divide it into smaller components that can be assembled robotically and autonomously in space. This is an artist’s rendering of what the fully assembled system might look like.NASA The trip to Mars and back is not one for the faint of heart. We’re not talking days, weeks, or months. But there are technologies that could help transport a crew on that round-trip journey in a relatively quick two years.
One option NASA is exploring is nuclear electric propulsion, which employs a nuclear reactor to generate electricity that ionizes, or positively charges, and electrically accelerates gaseous propellants to provide thrust to a spacecraft.
Researchers at NASA’s Langley Research Center in Hampton, Virginia, are working on a system that could help bring nuclear electric propulsion one significant, technology-defining step closer to reality.
Modular Assembled Radiators for Nuclear Electric Propulsion Vehicles, or MARVL, aims to take a critical element of nuclear electric propulsion, its heat dissipation system, and divide it into smaller components that can be assembled robotically and autonomously in space.
“By doing that, we eliminate trying to fit the whole system into one rocket fairing,” said Amanda Stark, a heat transfer engineer at NASA Langley and the principal investigator for MARVL. “In turn, that allows us to loosen up the design a little bit and really optimize it.”
Loosening up the design is key, because as Stark mentioned, previous ideas called for fitting the entire nuclear electric radiator system under a rocket fairing, or nose cone, which covers and protects a payload. Fully deployed, the heat dissipating radiator array would be roughly the size of a football field. You can imagine the challenge engineers would face in getting such a massive system folded up neatly inside the tip of a rocket.
The MARVL technology opens a world of possibilities. Rather than cram the whole system into an existing rocket, this would allow researchers the flexibility to send pieces of the system to space in whatever way would make the most sense, then have it all assembled off the planet.
Once in space, robots would connect the nuclear electric propulsion system’s radiator panels, through which a liquid metal coolant, such as a sodium-potassium alloy, would flow.
While this is still an engineering challenge, it is exactly the kind of engineering challenge in-space-assembly experts at NASA Langley have been working on for decades. The MARVL technology could mark a significant first milestone. Rather than being an add-on to an existing technology, the in-space assembly component will benefit and influence the design of the very spacecraft it would serve.
“Existing vehicles have not previously considered in-space assembly during the design process, so we have the opportunity here to say, ‘We’re going to build this vehicle in space. How do we do it? And what does the vehicle look like if we do that?’ I think it’s going to expand what we think of when it comes to nuclear propulsion,” said Julia Cline, a mentor for the project in NASA Langley’s Research Directorate, who led the center’s participation in the Nuclear Electric Propulsion tech maturation plan development as a precursor to MARVL. That tech maturation plan was run out of the agency’s Space Nuclear Propulsion project at Marshall Space Flight Center in Huntsville, Alabama.
NASA’s Space Technology Mission Directorate awarded the MARVL project through the Early Career Initiative, giving the team two years to advance the concept. Stark and her teammates are working with an external partner, Boyd Lancaster, Inc., to develop the thermal management system. The team also includes radiator design engineers from NASA’s Glenn Research Center in Cleveland and fluid engineers from NASA’s Kennedy Space Center in Florida. After two years, the team hopes to move the MARVL design to a small-scale ground demonstration.
The idea of robotically building a nuclear propulsion system in space is sparking imaginations.
“One of our mentors remarked, ‘This is why I wanted to work at NASA, for projects like this,’” said Stark, “which is awesome because I am so happy to be involved with it, and I feel the same way.”
Additional support for MARVL comes from the agency’s Space Nuclear Propulsion project. The project’s ongoing effort is maturing technologies for operations around the Moon and near-Earth exploration, deep space science missions, and human exploration using nuclear electric propulsion and nuclear thermal propulsion.
An artist’s rendering that shows the different components of a fully assembled nuclear electric propulsion system.NASAView the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
With one of its solar arrays deployed, NASA’s Lunar Trailblazer sits in a clean room at Lockheed Martin Space. The large silver grate attached to the spacecraft is the radiator for HVM³, one of two instruments that the mission will use to better understand the lunar water cycle.Lockheed Martin Space There’s water on the Moon, but scientists only have a general idea of where it is and what form it is in. A trailblazing NASA mission will get some answers.
When NASA’s Lunar Trailblazer begins orbiting the Moon next year, it will help resolve an enduring mystery: Where is the Moon’s water? Scientists have seen signs suggesting it exists even where temperatures soar on the lunar surface, and there’s good reason to believe it can be found as surface ice in permanently shadowed craters, places that have not seen direct sunlight for billions of years. But, so far, there have been few definitive answers, and a full understanding of the nature of the Moon’s water cycle remains stubbornly out of reach.
This is where Lunar Trailblazer comes in. Managed by NASA’s Jet Propulsion Laboratory and led by Caltech in Pasadena, California, the small satellite will map the Moon’s surface water in unprecedented detail to determine the water’s abundance, location, form, and how it changes over time.
“Making high-resolution measurements of the type and amount of lunar water will help us understand the lunar water cycle, and it will provide clues to other questions, like how and when did Earth get its water,” said Bethany Ehlmann, principal investigator for Lunar Trailblazer at Caltech. “But understanding the inventory of lunar water is also important if we are to establish a sustained human and robotic presence on the Moon and beyond.”
Future explorers could process lunar ice to create breathable oxygen or even fuel. And they could also conduct science. Using information from Lunar Trailblazer, future human or robotic scientific investigations could sample the ice for later study to determine where the water came from. For example, the presence of ammonia in ice samples may indicate the water came from comets; sulfur, on the other hand, could show that it was vented to the surface from the lunar interior when the Moon was young and volcanically active.
This artist’s concept depicts NASA’s Lunar Trailblazer in lunar orbit about 60 miles (100 kilometers) from the surface of the Moon. The spacecraft weighs only 440 pounds (200 kilograms) and measures 11.5 feet (3.5 meters) wide when its solar panels are fully deployed.Lockheed Martin Space “In the future, scientists could analyze the ice in the interiors of permanently shadowed craters to learn more about the origins of water on the Moon,” said Rachel Klima, Lunar Trailblazer deputy principal investigator at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “Like an ice core from a glacier on Earth can reveal the ancient history of our planet’s atmospheric composition, this pristine lunar ice could provide clues as to where that water came from and how and when it got there.”
Understanding whether water molecules move freely across the surface of the Moon or are locked inside rock is also scientifically important. Water molecules could move from frosty “cold traps” to other locations throughout the lunar day. Frost heated by the Sun sublimates (turning from solid ice to a gas without going through a liquid phase), allowing the molecules to move as a gas to other cold locations, where they could form new frost as the Sun moves overhead. Knowing how water moves on the Moon could also lead to new insights into the water cycles on other airless bodies, such as asteroids
Two Instruments, One Mission
Two science instruments aboard the spacecraft will help unlock these secrets: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager.
Developed by JPL, HVM3 will detect and map the spectral fingerprints, or wavelengths of reflected sunlight, of minerals and the different forms of water on the lunar surface. The spectrometer can use faint reflected light from the walls of craters to see the floor of even permanently shadowed craters.
The LTM instrument, which was built by the University of Oxford and funded by the UK Space Agency, will map the minerals and thermal properties of the same lunar landscape. Together they will create a picture of the abundance, location, and form of water while also tracking how its distribution changes over time.
“The LTM instrument precisely maps the surface temperature of the Moon while the HVM3 instrument looks for the spectral signature of water molecules,” said Neil Bowles, instrument scientist for LTM at the University of Oxford. “Both instruments will allow us to understand how surface temperature affects water, improving our knowledge of the presence and distribution of these molecules on the Moon.”
Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide when its solar panels are fully deployed, Lunar Trailblazer will orbit the Moon about 60 miles (100 kilometers) from the surface. The mission was selected by NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration) program in 2019 and will hitch a ride on the same launch as the Intuitive Machines-2 delivery to the Moon through NASA’s Commercial Lunar Payload Services initiative. Lunar Trailblazer passed a critical operational readiness review in early October at Caltech after completing environmental testing in August at Lockheed Martin Space in Littleton, Colorado, where it was assembled.
The orbiter and its science instruments are now being put through flight system software tests that simulate key aspects of launch, maneuvers, and the science mission while in orbit around the Moon. At the same time, the operations team led by IPAC at Caltech is conducting tests to simulate commanding, communication with NASA’s Deep Space Network, and navigation.
More About Lunar Trailblazer
Lunar Trailblazer is managed by JPL, and its science investigation and mission operations are led by Caltech with the mission operations center at IPAC. Managed for NASA by Caltech, JPL also provides system engineering, mission assurance, the HVM3 instrument, as well as mission design and navigation. Lockheed Martin Space provides the spacecraft, integrates the flight system, and supports operations under contract with Caltech.
SIMPLEx mission investigations are managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program at NASA Headquarters in Washington. The program conducts space science investigations in the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters.
For more information about Lunar Trailblazer, visit:
https://www.jpl.nasa.gov/missions/lunar-trailblazer
News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Gordon Squires
IPAC, Pasadena, Calif.
626-395-3121
squires@ipac.caltech.edu
2024-148
Share
Details
Last Updated Oct 29, 2024 Related Terms
Lunar Trailblazer Earth's Moon Moons Planetary Science Planetary Science Division Science Mission Directorate Explore More
4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing
Summer heat has significant effects in the mountainous regions of the western United States. Melted…
Article 3 hours ago 3 min read Gateway: Centering Science
Gateway is set to advance science in deep space, bringing groundbreaking research opportunities to lunar…
Article 4 hours ago 6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
Article 23 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Permafrost Tunnel north of Fairbanks, Alaska, was dug in the 1960s and is run by the U.S. Army’s Cold Regions Research and Engineering Laboratory. It is the site of much research into permafrost — ground that stays frozen throughout the year, for multiple years.NASA/Kate Ramsayer Earth’s far northern reaches have locked carbon underground for millennia. New research paints a picture of a landscape in change.
A new study, co-authored by NASA scientists, details where and how greenhouse gases are escaping from the Earth’s vast northern permafrost region as the Arctic warms. The frozen soils encircling the Arctic from Alaska to Canada to Siberia store twice as much carbon as currently resides in the atmosphere — hundreds of billions of tons — and most of it has been buried for centuries.
An international team, led by researchers at Stockholm University, found that from 2000 to 2020, carbon dioxide uptake by the land was largely offset by emissions from it. Overall, they concluded that the region has been a net contributor to global warming in recent decades in large part because of another greenhouse gas, methane, that is shorter-lived but traps significantly more heat per molecule than carbon dioxide.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Greenhouse gases shroud the globe in this animation showing data from 2021. Carbon dioxide is shown in orange; methane is shown in purple. Methane traps heat 28 times more effectively than carbon dioxide over a 100-year timescale. Wetlands are a significant source of such emissions.NASA’s Scientific Visualization Studio The findings reveal a landscape in flux, said Abhishek Chatterjee, a co-author and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “We know that the permafrost region has captured and stored carbon for tens of thousands of years,” he said. “But what we are finding now is that climate-driven changes are tipping the balance toward permafrost being a net source of greenhouse gas emissions.”
Carbon Stockpile
Permafrost is ground that has been permanently frozen for anywhere from two years to hundreds of thousands of years. A core of it reveals thick layers of icy soils enriched with dead plant and animal matter that can be dated using radiocarbon and other techniques. When permafrost thaws and decomposes, microbes feed on this organic carbon, releasing some of it as greenhouse gases.
Unlocking a fraction of the carbon stored in permafrost could further fuel climate change. Temperatures in the Arctic are already warming two to four times faster than the global average, and scientists are learning how thawing permafrost is shifting the region from being a net sink for greenhouse gases to becoming a net source of warming.
They’ve tracked emissions using ground-based instruments, aircraft, and satellites. One such campaign, NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE), is focused on Alaska and western Canada. Yet locating and measuring emissions across the far northern fringes of Earth remains challenging. One obstacle is the vast scale and diversity of the environment, composed of evergreen forests, sprawling tundra, and waterways.
This map, based on data provided by the National Snow and Ice Data Center, shows the extent of Arctic permafrost. The amount of permafrost underlying the surface ranges from continuous — in the coldest areas — to more isolated and sporadic patches.NASA Earth Observatory Cracks in the Sink
The new study was undertaken as part of the Global Carbon Project’s RECCAP-2 effort, which brings together different science teams, tools, and datasets to assess regional carbon balances every few years. The authors followed the trail of three greenhouse gases — carbon dioxide, methane, and nitrous oxide — across 7 million square miles (18 million square kilometers) of permafrost terrain from 2000 to 2020.
Researchers found the region, especially the forests, took up a fraction more carbon dioxide than it released. This uptake was largely offset by carbon dioxide emitted from lakes and rivers, as well as from fires that burned both forest and tundra.
They also found that the region’s lakes and wetlands were strong sources of methane during those two decades. Their waterlogged soils are low in oxygen while containing large volumes of dead vegetation and animal matter — ripe conditions for hungry microbes. Compared to carbon dioxide, methane can drive significant climate warming in short timescales before breaking down relatively quickly. Methane’s lifespan in the atmosphere is about 10 years, whereas carbon dioxide can last hundreds of years.
The findings suggest the net change in greenhouse gases helped warm the planet over the 20-year period. But over a 100-year period, emissions and absorptions would mostly cancel each other out. In other words, the region teeters from carbon source to weak sink. The authors noted that events such as extreme wildfires and heat waves are major sources of uncertainty when projecting into the future.
Bottom Up, Top Down
The scientists used two main strategies to tally greenhouse gas emissions from the region. “Bottom-up” methods estimate emissions from ground- and air-based measurements and ecosystem models. Top-down methods use atmospheric measurements taken directly from satellite sensors, including those on NASA’s Orbiting Carbon Observatory-2 (OCO-2) and JAXA’s (Japan Aerospace Exploration Agency)Greenhouse Gases Observing Satellite.
Regarding near-term, 20-year, global warming potential, both scientific approaches aligned on the big picture but differed in magnitude: The bottom-up calculations indicated significantly more warming.
“This study is one of the first where we are able to integrate different methods and datasets to put together this very comprehensive greenhouse gas budget into one report,” Chatterjee said. “It reveals a very complex picture.”
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
Written by Sally Younger
2024-147
Share
Details
Last Updated Oct 29, 2024 Related Terms
Earth Carbon Cycle Climate Change Greenhouse Gases Jet Propulsion Laboratory Explore More
6 min read NASA’s Perseverance Rover Looks Back While Climbing Slippery Slope
Article 22 hours ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 1 day ago 3 min read High-Altitude ER-2 Flights Get Down-to-Earth Data
Article 4 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.