Jump to content

NASA’s Glenn Delgado Receives US Women’s Chamber of Commerce Award


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions. 

      Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface. 
      The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A. 

      Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole. 

      The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.  

      “We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.” 

      Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration. 

      Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations. 

      “The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.” 

      Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness. 

      “Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.” 

      The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.  

      “Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”

      Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
      View the full article
    • By NASA
      Credit: NASA For the 14th consecutive year, NASA received an unmodified, or “clean,” opinion from an external auditor on its fiscal year 2024 financial statements.
      The rating is the best possible audit opinion, certifying that NASA’s financial statements conform with Generally Accepted Accounting Principles for federal agencies and accurately present the agency’s financial position. The audit opinion reaffirms the agency’s commitment to transparency in the use of American taxpayers’ dollars.
      “For the 14th year in a row, NASA has delivered a reliable, accurate, and transparent report of our fiscal operations as we explore the unknown in air and space,” said NASA Administrator Bill Nelson. “I thank NASA’s Chief Financial Officer Margaret Schaus for her leadership, and I am proud that NASA continues to uphold the public’s trust in our goals, our missions, and our financial reporting practices. Such trust is critical to our agency’s success.”
      The 2024 Agency Financial Report provides key financial and performance information and demonstrates the agency’s commitment to transparency in the use of American taxpayers’ dollars. In addition, the 2024 report presents progress during the past year, and spotlights the array of NASA missions, objectives, and workforce advanced with these financial resources.
      “I am proud NASA has achieved its 14th consecutive clean bill of health on its financial statements,” said NASA Chief Financial Officer Margaret Schaus. “I want to recognize the outstanding commitment of our NASA team to ensuring sound stewardship and transparency over the resources entrusted to our agency.”
      In fiscal year 2024, NASA continued preparation for Artemis II, a mission to send four astronauts around the Moon as part of the Artemis campaign. The agency also publicly unveiled the X-59 quiet supersonic aircraft, which will change the way we travel, paving the way for a new generation of commercial aircraft that can travel faster than the speed of sound. Among other highlights, NASA built upon our longstanding efforts to study our Earth as a system, advancing our work on the NASA-Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) satellite. This joint mission between the agency and ISRO is the first radar of its kind in space to systematically map the Earth.
      For more information on NASA’s budget, visit:
      https://www.nasa.gov/budget
      -end-
      Meira Bernstein / Roxana Bardan
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / roxana.bardan@nasa.gov
      Share
      Details
      Last Updated Nov 15, 2024 LocationNASA Headquarters Related Terms
      NASA Headquarters Budget & Annual Reports Office of the Chief Financial Officer (OCFO) View the full article
    • By NASA
      NASA researchers Guan Yang, Jeff Chen, and their team received the 2024 Innovator of The Year Award at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for their exemplary work on a lidar system enhanced with artificial intelligence and other technologies.
      Engineer Jeffrey Chen tests a lidar prototype on the roof of Building 33 at NASA’s Goddard Space Flight Center in Greenbelt, Md. Chen and his team earned the center’s 2024 Innovator of the Year award for their work on CASALS, a lidar system enhanced with artificial intelligence and other technologies.NASA Like a laser-based version of sonar, lidar and its use in space exploration is not new. But the lidar system Yang and Chen’s team have developed — formally the Concurrent Artificially-intelligent Spectrometry and Adaptive Lidar System (CASALS) — can produce higher resolution data within a smaller space, significantly increasing efficiency compared to current models.
      The true revolution in CASALS is a unique combination of related technologies, such as highly efficient laser and receiver designs, wavelength-based, non-mechanical beam steering, multispectral imaging, and the incorporation of artificial intelligence to allow the instrument to make its own decisions while in orbit, instead of waiting for direction from human controllers on the ground.
      “Existing 3D-imaging lidars struggle to provide the 2-inch resolution needed by guidance, navigation and control technologies to ensure precise and safe landings essential for future robotic and human exploration missions,” team engineer Jeffrey Chen said in an earlier interview. “Such a system requires 3D hazard-detection lidar and a navigation doppler lidar, and no existing system can perform both functions.”
      The CASALS lidar is being developed to study land and ice topography, coastline changes, and other Earth science topics. Future applications in solar system science beyond our planet are already in the works, including space navigation improvements and high-resolution lunar mapping for NASA’s Artemis campaign to return astronauts to the Moon.
      An effective and compact lidar system like CASALS could also map rocky planets like Venus or Mars.
      NASA leveraged contributions from external Small Business Innovation Research companies such as Axsun Technologies, Freedom Photonics, and Left Hand for laser and optical technology to help make CASALS a reality.
      The Internal Research and Development (IRAD) Innovator of The Year award is presented by Goddard’s Office of the Chief Technologist to a person or team within the program with a notable contribution to cutting-edge technology. The CASALS team was presented their award at a technology poster session on Nov. 6, 2024, at NASA Goddard.
      By Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Nov 15, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Technology Explore More
      5 min read NASA, Industry Improve Lidars for Exploration, Science
      NASA engineers will test a suite of new laser technologies from an aircraft this summer…
      Article 8 months ago 4 min read Goddard Engineers Improve NASA Lidar Tech for Exploration
      Cutting edge innovations by NASA researchers seek to refine lidars into smaller, lighter, more versatile…
      Article 1 year ago 3 min read NASA Engineer Earns Goddard Innovation Award for Sun-studying Photon Sieves
      Goddard Engineer Kevin Denis receives innovation award for photon sieves.
      Article 1 year ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Callista PuchmeyerCredit: NASA Cleveland State University (CSU) inducted Callista Puchmeyer, chief counsel at NASA’s Glenn Research Center in Cleveland, into the CSU College of Law Hall of Fame during a ceremony on Nov. 1.  
      Puchmeyer provides expert legal advice to NASA Glenn’s center director and other senior leaders. She also manages Glenn’s Office of the General Counsel, a diverse legal staff that advises Glenn clients on a broad spectrum of federal matters. 
      Established in 2017, CSU’s Law Hall of Fame honors the outstanding contributions of its distinguished alumni, faculty, staff, friends, and community leaders. 
      Return to Newsletter View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The American Institute of Aeronautics and Astronautics (AIAA) has named two distinguished engineers at NASA’s Glenn Research Center in Cleveland AIAA Associate Fellows.  
      The grade of Associate Fellow recognizes individuals who have accomplished or overseen important engineering or scientific work, done original work of outstanding merit, or have otherwise made outstanding contributions to the arts, sciences, or technology of aeronautics or astronautics. To be selected as an Associate Fellow, an individual must be an AIAA Senior Member in good standing, with at least 12 years of professional experience, and be recommended by three AIAA members. 
      L. Danielle KochCredit: NASA L. Danielle Koch, aerospace engineer, performs research and educational outreach at NASA Glenn. Her 34-year career at NASA has been dedicated to conducting research for safer, cleaner, and quieter aircraft engines; high-performance ventilation systems for spacecraft; and bio-inspired broadband acoustic absorbers. She has authored over 50 technical publications and has been granted three patents. Koch has been recognized for excellence in engineering and educational outreach with many awards, most recently named as one of the 2024 Women of Distinction by the Girl Scouts of Northeast Ohio. 

      Dr. Sam LeeCredit: NASA Dr. Sam Lee, a research engineer supporting the Aircraft Icing Branch, conducts research in NASA Glenn’s Icing Research Tunnel to study how ice builds up, or accretes, on aircraft surfaces. The results from the experiments are used to understand the physics of how ice accretes on aircraft during flight and to provide the validation data to develop computational tools to predict ice accretion. He also performs research on the effects of ice accretion on aircraft performance in aerodynamic wind tunnels. Lee has authored 17 conference papers and journal papers. He has contributed to the development of many future engineers and scientists as a mentor for NASA’s Explorer Scouts program and various college internship programs. Lee has been part of the Aircraft Icing Branch since 2002.   
      AIAA will formally honor and induct the class at the AIAA Associate Fellows Induction Ceremony and Dinner on Jan. 8, 2025, during the 2025 AIAA SciTech Forum in Orlando.  
      Return to Newsletter Explore More
      4 min read Entrevista con Instructora de OCEANOS María Fernanda Barbarena-Arias
      Article 14 hours ago 4 min read Entrevista con Instructor de OCEANOS Roy Armstrong
      Article 14 hours ago 4 min read Entrevista con Instructor de OCEANOS Juan Torres-Pérez
      Article 14 hours ago View the full article
  • Check out these Videos

×
×
  • Create New...