Jump to content

Recommended Posts

Posted
Calm_above_the_storm_card_full.jpg Image:

Auroras make for great Halloween décor over Earth, though ESA astronaut Thomas Pesquet snapped these green smoky swirls of plasma from the International Space Station in August. Also pictured are the Soyuz MS-18 “Yuri Gagarin” (left) and the new Nauka module (right).  

The Station saw quite some aurora activity that month, caused by solar particles colliding with Earth’s atmosphere and producing a stunning light show.

Fast forward to October and space is quite busy.

On 9 October the Sun ejected a violent mass of fast-moving plasma into space that arrived at Earth a few days later. The coronal mass ejection (CME) crashed into our planet’s magnetosphere and once again lit up the sky.

CMEs explode from the Sun, rush through the Solar System and while doing so speed up the solar wind – a stream of charged particles continuously released from the Sun’s upper atmosphere.

While most of the solar wind is blocked by Earth’s protective magnetosphere, some charged particles become trapped in Earth’s magnetic field and flow down to the geomagnetic poles, colliding with the upper atmosphere to create the beautiful Aurora.

While the view outside the Space Station is mesmerising, the astronauts inside are busy with science and prepping for the next crew’s arrival later this month. 

Thomas will welcome fellow ESA astronaut Matthias Maurer, currently scheduled to launch to the Space Station on Halloween.

In the meantime, Thomas has taken over command of the Space Station and is busy completing more science ahead of the end of mission Alpha and his return to Earth.

The astronauts have taken up space farming lately, tending to New Mexico Hatch Green Chili peppers in the name of science. A few investigations are looking into different aspects of plant behaviour in microgravity.

Tending to the body via exercise is also standard practice on the Space Station. The crew performed cycles of experiments looking into immersive exercise practices as well as the familiar Grasp experiment on reflexes under microgravity conditions.

Even downtime is ripe for experimentation, with Thomas wearing a headset to bed to track quality of sleep under weightless conditions. Read more about the goings-on in the latest monthly science recap.

Find more stunning imagery and exciting news on the Alpha blog.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Earth (ESD) Earth Explore Climate Change Science in Action Multimedia Data For Researchers About Us 6 min read
      NASA Flights Map Critical Minerals from Skies Above Western US
      Various minerals are revealed in vibrant detail in this sample mineral map of Cuprite, Nevada, following processing of imaging spectrometer data. USGS On a crystal-clear afternoon above a desert ghost town, a NASA aircraft scoured the ground for minerals.
      The plane, a high-altitude ER-2 research aircraft, had taken off early that morning from NASA’s Armstrong Flight Research Center in Edwards, California. Below pilot Dean Neeley, the landscape looked barren and brown. But to the optical sensors installed on the plane’s belly and wing, it gleamed in hundreds of colors.
      Neeley’s flight that day was part of GEMx, the Geological Earth Mapping Experiment led by NASA and the U.S. Geological Survey to map critical minerals across more than 190,000 square miles (500,000 square kilometers) of North American soil. Using airborne instruments, scientists are collecting these measurements over parts of California, Nevada, Arizona, and Oregon. That’s an area about the size of Spain.   
      An ER-2 science aircraft banks away during a flight over the southern Sierra Nevada. The high-altitude plane supports a wide variety of research missions, including the GEMx campaign, which is mapping critical minerals in the Western U.S. using advanced airborne imaging developed by NASA. Credit: NASA/Carla Thomas Lithium, aluminum, rare earth elements such as neodymium and cerium — these are a few of the 50 mineral commodities deemed essential to U.S. national security, to the tech industry, and to clean energy. They support a wide range of technologies from smartphones to steelmaking, from wind turbines to electric vehicle batteries. In 2023, the U.S. imported its entire supply of 12 of these minerals and imported at least 50% of its supply of another 29.
      The GEMx team believes that undiscovered deposits of at least some of these minerals exist domestically, and modern mineral maps will support exploration by the private sector.
      “We’ve been exploring the earth beneath our feet for hundreds of years, and we’re discovering that we’ve only just begun,” said Kevin Reath, NASA’s associate project manager for GEMx.
      The View From 65,000 Feet
      To jumpstart mineral exploration, USGS is leading a nationwide survey from the inside out, using tools like lidar and magnetic-radiometric sensors to probe ancient terrain in new detail.
      The collaboration with NASA brings another tool to bear: imaging spectrometers. These advanced optical instruments need to stay cold as they fly high. From cryogenic vacuum chambers on planes or spacecraft, they detect hundreds of wavelengths of light — from the visible to shortwave infrared — reflected off planetary surfaces. The technology is now being used to help identify surface minerals across dry, treeless expanses of the Western U.S.
      Every molecule reflects a unique pattern of light, like a fingerprint. Processed through a spectroscopic lens, a desert expanse can appear like an oil painting popping with different colorful minerals, including pale-green mica, blue kaolinite, and plummy gypsum.
      “We’re not digging for gold. We’re revealing what’s hidden in plain sight,” said Robert Green, a researcher at NASA’s Jet Propulsion Laboratory in Southern California, who helped pioneer spectroscopic imaging at NASA JPL in the late 1970s. Like many of the scientists involved with GEMx, he has spent years surveying other worlds, including the Moon and Mars.
      A handful of such instruments exist on Earth, and Green is in charge of two of them. One, called EMIT (Earth Surface Mineral Dust Source Investigation) flies aboard the International Space Station. Surveying Earth’s surface from about 250 miles (410 kilometers) above, EMIT has captured thousands of images at a resolution of 50 by 50 miles (80 by 80 kilometers) in a wide belt around Earth’s mid-section.
      The other instrument rides beneath the fuselage of the ER-2 aircraft. Called AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), it’s helping guide geologists to critical minerals directly and indirectly, by spotting the types of rocks that often contain them. It’s joined by another instrument developed by NASA, the MODIS/ASTER Airborne Simulator (MASTER), which senses thermal infrared radiance. Both instruments provide finely detailed measurements of minerals that complement what EMIT sees on a broader scale.
      A crew of life support staff prepare pilot Dean Neeley for an ER-2 flight. A specialized suit – similar to an astronaut’s – allows the pilot to work, breathe, and eat at altitudes almost twice as high as a cruising passenger jet. NASA/Carla Thomas Old Mines, New Finds
      In and around the multimillion-year-old magmas of the Great Basin of the Western U.S., lithium takes several forms. The silvery metal is found in salty brines, in clay, and locked in more than 100 different types of crystals. It can also be detected in the tailings of abandoned prospects like Hector Mine, near Barstow, California.
      Abandoned years before a magnitude 7.1 earthquake rocked the region in 1999, the mine is located on a lode of hectorite, a greasy, lithium-bearing clay. Geologists from USGS are taking a second look at legacy mines like Hector as demand for lithium rises, driven primarily by lithium-ion batteries. A typical battery pack in an electric vehicle uses about 17 pounds (eight kilograms) of the energy-dense metal.
      Australia and Chile lead worldwide production of lithium, which exceeded 180,000 tons in 2023. The third largest producer is China, which also hosts about 50% of global lithium refining capacity. Total U.S. production was around 1,000 tons, sourced entirely from a deposit in northern Nevada. Known reserves in the state are estimated to contain more than a million metric tons of lithium, according to data collected by the Nevada Bureau of Mines and Geology.
      Mine wastes are also potential sources of lithium, said Bernard Hubbard, a remote sensing geologist at USGS, and many other byproduct commodities that are considered critical today but were discarded by previous generations.
      “There are old copper and silver mines in the West that were abandoned long before anyone knew what lithium or rare earth element deposits were,” Hubbard said. “What has been a pollution source for communities could now be a resource.”
      Following a winter pause, high-altitude GEMx flights over the American West will resume in the spring of 2025, after which USGS will process the raw data and release the first mineral maps. Already, the project has collected enough data to start producing a complete hyperspectral map of California — the first of its kind.
      The value of these observations extends beyond identifying minerals. Scientists expect they’ll provide new insight into invasive plant species, waste from mines that can contaminate surrounding environments, and natural hazards such as earthquakes, landslides, and wildfires.
      “We are just beginning to scratch the surface in applying these measurements to help the nation’s economy, security, and health,” said Raymond Kokaly, USGS research geophysicist and lead of the GEMx survey.
      More About GEMx
      The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative (EarthMRI), through investments from the Bipartisan Infrastructure Law. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging as well as the expertise in analyzing the datasets and extracting critical mineral information from them.
      Data collected by GEMx is available here.
      By Sally Younger
      NASA’s Earth Science News Team
      Share








      Details
      Last Updated Dec 05, 2024 Contact Sally Younger Related Terms
      Earth Explore More
      4 min read Expanded AI Model with Global Data Enhances Earth Science Applications 


      Article


      1 day ago
      4 min read NASA AI, Open Science Advance Disaster Research and Recovery


      Article


      1 week ago
      5 min read NASA Data Reveals Role of Green Spaces in Cooling Cities


      Article


      1 week ago
      Keep Exploring Discover Related Topics
      Earth Surface and Interior Focus Area



      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.


      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.

      View the full article
    • By NASA
      Earth (ESD)Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 4 min read
      Via NASA Plane, Scientists Find New Gamma-ray Emission in Storm Clouds
      Tropical thunderstorm with lightning, near the airport of Santa Marta, Colombia. Credit: Oscar van der Velde There’s more to thunderclouds than rain and lightning. Along with visible light emissions, thunderclouds can produce intense bursts of gamma rays, the most energetic form of light, that last for millionths of a second. The clouds can also glow steadily with gamma rays for seconds to minutes at a time.
      Researchers using NASA airborne platforms have now found a new kind of gamma-ray emission that’s shorter in duration than the steady glows and longer than the microsecond bursts. They’re calling it a flickering gamma-ray flash. The discovery fills in a missing link in scientists’ understanding of thundercloud radiation and provides new insights into the mechanisms that produce lightning. The insights, in turn, could lead to more accurate lightning risk estimates for people, aircraft, and spacecraft.
      Researchers from the University of Bergen in Norway led the study in collaboration with scientists from NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the U.S. Naval Research Laboratory, and multiple universities in the U.S., Mexico, Colombia, and Europe. The findings were described in a pair of papers in Nature, published Oct. 2.
      The international research team made their discovery while flying a battery of detectors aboard a NASA ER-2 research aircraft. In July 2023, the ER-2 set out on a series of 10 flights from MacDill Air Force Base in Tampa, Florida. The plane flew figure-eight flight patterns a few miles above tropical thunderclouds in the Caribbean and Central America, providing unprecedented views of cloud activity.
      The scientific payload was developed for the Airborne Lightning Observatory for Fly’s Eye Geostationary Lightning Mapper Simulator and Terrestrial Gamma-ray Flashes (ALOFT) campaign. Instrumentation in the payload included weather radars along with multiple sensors for measuring gamma rays, lightning flashes, and microwave emissions from clouds. 
      NASA’s high-flying ER-2 airplane carries instrumentation in this artist’s impression of the ALOFT mission to record gamma rays (colored purple for illustration) from thunderclouds.Credit: NASA/ALOFT team The researchers had hoped ALOFT instruments would observe fast radiation bursts known as terrestrial gamma-ray flashes (TGFs). The flashes, first discovered in 1992 by NASA’s Compton Gamma Ray Observatory spacecraft, accompany some lightning strikes and last only millionths of a second. Despite their high intensity and their association with visible lightning, few TGFs have been spotted during previous aircraft-based studies.  
      “I went to a meeting just before the ALOFT campaign,” said principal investigator Nikolai Østgaard, a space physicist with the University of Bergen. “And they asked me: ‘How many TGFs are you going to see?’ I said: ‘Either we’ll see zero, or we’ll see a lot.’ And then we happened to see 130.” 
      However, the flickering gamma-ray flashes were a complete surprise.
      “They’re almost impossible to detect from space,” said co-principal investigator Martino Marisaldi, who is also a University of Bergen space physicist. “But when you are flying at 20 kilometers [12.5 miles] high, you’re so close that you will see them.” The research team found more than 25 of these new flashes, each lasting between 50 to 200 milliseconds. 
      The abundance of fast bursts and the discovery of intermediate-duration flashes could be among the most important thundercloud discoveries in a decade or more, said University of New Hampshire physicist Joseph Dwyer, who was not involved in the research. “They’re telling us something about how thunderstorms work, which is really important because thunderstorms produce lightning that hurts and kills a lot of people.” 
      More broadly, Dwyer said he is excited about the prospects of advancing the field of meteorology. “I think everyone assumes that we figured out lightning a long time ago, but it’s an overlooked area … we don’t understand what’s going on inside those clouds right over our heads.” The discovery of flickering gamma-ray flashes may provide crucial clues scientists need to understand thundercloud dynamics, he said.
      Turning to aircraft-based instrumentation rather than satellites ensured a lot of bang for research bucks, said the study’s project scientist, Timothy Lang of NASA’s Marshall Space Flight Center in Huntsville, Alabama. 
      “If we had gotten one flash, we would have been ecstatic — and we got well over 100,” he said. This research could lead to a significant advance in our understanding of thunderstorms and radiation from thunderstorms. “It shows that if you have the right problem and you’re willing to take a little bit of risk, you can have a huge payoff.”
      By James Riordon
      NASA’s Earth Science News Team
      Share
      Details
      Last Updated Oct 02, 2024 EditorJenny MarderContactJames RiordonLocationMarshall Space Flight Center Related Terms
      Earth Gamma Rays Goddard Space Flight Center View the full article
    • By NASA
      NASA Administrator Bill Nelson | Answering Climate Change from Above
    • By European Space Agency
      Just a month after its launch, ESA’s Arctic Weather Satellite has already delivered its first images, notably capturing Storm Boris, which has been wreaking havoc across central Europe. 
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Persevering Through the Storm
      A region-wide seasonal dust storm obscures the Jezero Crater in this image from NASA’s Mars Perseverance rover, acquired using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. Perseverance captured the image on Aug. 20, 2024 (Sol 1244, or Martian day 1,244 of the Mars 2020 mission) at the local mean solar time of 16:05:34. This image is part of a Mastcam-Z mosaic of the “northern fan,” a part of Jezero Crater that Perseverance never drove through, but is an area that’s thought to have been deposited in a similar way to the delta that the rover did explore. NASA/JPL-Caltech/ASU It is dust-storm season on Mars! Over the past couple of weeks, as we have been ascending the Jezero Crater rim, our science team has been monitoring rising amounts of dust in the atmosphere. This is expected: Dust activity is typically highest around this time of the Martian year (early Spring in the northern hemisphere). The increased dust has made our views back toward the crater hazier than usual, and provided our atmospheric scientists with a great opportunity to study the way that dust storms form, develop, and spread around the planet.
      Perseverance has a suite of scientific instruments well-suited to study the Martian atmosphere. The Mars Environmental Dynamics Analyzer (MEDA) provides regular weather reports, the cadence of which has increased during the storm to maximize our science. We also routinely point our Mastcam-Z imager toward the sky to assess the optical density (“tau”) of the atmosphere.
      There are not any signs that this regional dust storm will become planetwide — like the global dust storm in 2018 — but every day we are assessing new atmospheric data. Hopefully the skies will further clear up as we continue to climb in the coming weeks, because we are expecting stunning views of the crater floor and Jezero delta. This will offer the Perseverance team a unique chance to reflect on the tens of kilometers we have driven and years we have spent exploring Mars together.
      Written by Henry Manelski, Ph.D. student at Purdue University
      Share








      Details
      Last Updated Sep 05, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4295-4296: A Martian Moon and Planet Earth


      Article


      7 hours ago
      2 min read Sol 4294: Return to McDonald Pass


      Article


      21 hours ago
      3 min read Sols 4291-4293: Fairview Dome, the Sequel


      Article


      22 hours ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...