Jump to content

Recommended Posts

Posted
Sophisticated data management and analytic software programs are not only enhancing Space Systems Command’s (SSC) ability to carry out its Space Domain Awareness mission, but also have been leveraged to provide a rapid response to humanitarian crises across the globe. “Data is the life blood of our digital force and our commercial partners have a lot that they can offer,” said Col. Jennifer M. Krolikowski, senior materiel leader for SSC Enterprise Corps’ West Coast data/cyber coding factory serving the United States Space Force (USSF). “These commercial solutions allow us to go faster which ultimately helps us turn that data into knowledge to drive decision-making.”
Developed and managed from SSC's Cross Mission Data and Kobayashi Maru teams, Warp Core successfully expanded from Space C2’s initial development, and currently supports SSC’s Space Domain Awareness mission by providing a common data interface and enabling better data sharing, streamlined manual reporting processes, and decommissioning of legacy systems.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Double Asteroid Redirection Test required extreme precision in mission planning to achieve its mission of impacting an asteroid. The founders of Continuum Space worked on astrodynamics relating to this mission, which they used to inform their product.NASA Planning space missions is a very involved process, ensuring orbits are lined up and spacecraft have enough fuel is imperative to the long-term survival of orbital assets. Continuum Space Systems Inc. of Pasadena, California, produces a cloud-based platform that gives mission planners everything they need to certify that their space resources can accomplish their goals. 

      Continuum’s story begins at NASA’s Jet Propulsion Laboratory in Southern California. Loic Chappaz, the company’s co-founder, started at JPL as an intern working on astrodynamics related to NASA’s Double Asteroid Redirection Test. There he met Leon Alkalai, a JPL technical fellow who spent his 30-year career at the center planning deep space missions. After Alkalai retired from NASA, he founded Mandala Space Ventures, a startup that explored several avenues of commercial space development. Chappaz soon became Mandala’s first employee, but to plan their future, Mandala’s leadership began thinking about the act of planning itself. 

      Because the staff had decades of combined experience at JPL, they knew the center had the building blocks for the software they needed. After licensing several pieces of software from JPL, the company began building planning systems that were highly adaptable to any space mission they could come up with. Mandala eventually evolved into a venture firm that incubated space-related startups. However, because Mandala had invested considerably in developing mission-planning tools, further development could be performed by a new company, and Continuum was fully spun off from Mandala in 2021. 

      Continuum’s platform includes several features for mission planners, such as plotting orbital maneuvers and risk management evaluations. Some of these are built upon software licensed from the Jet Propulsion Laboratory.Continuum Space Systems Inc. Continuum’s tools are designed to take a space mission from concept to completion. There are three different components to their “mission in a box” — design, build and test, and mission operations. The base of these tools are several pieces of software developed at NASA. As of 2024, several space startups have begun planning missions with Continuum’s NASA-inspired software, as well as established operators of satellite constellations. From Continuum to several startups, NASA technologies continue to prove a valuable foundation for the nation’s space economy.  
      Read More Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Expertise Helps Record all the Buzz
      Article 2 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 3 weeks ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
      Article 3 months ago Keep Exploring Discover Related Topics
      Planetary Defense – DART
      NASA’s Double Asteroid Redirection Test (DART), built and managed by the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Planetary…
      Jet Propulsion Laboratory – News
      Science Missions
      Solar System
      View the full article
    • By Space Force
      Mission Delta commanders took the stage in two separate panels at the 2025 Air and Space Forces Association Warfare Symposium discussing the future of missile warning systems and GPS modernization, both critical components of space superiority.

      View the full article
    • By Space Force
      Chief of Space Operations Gen. Chance Saltzman visited Air Forces Southern (AFSOUTH) headquarters Feb. 27, reinforcing the increasing role of space-based capabilities in the Western Hemisphere.

      View the full article
    • By NASA
      One semester as a NASA Pathways intern was enough to inspire Portia Keyes to sign up for a Russian language class at college. After interning in the Johnson Space Center’s Office of Procurement, Keyes hoped to someday use her new language skills in support of the International Space Station Program.

      Now, 12 years later, Keyes is the deputy manager of the procurement office for the International Space Station and Commercial Low Earth Orbit Development Programs. That means she is responsible for implementing and overseeing acquisition solutions that enable the purchasing of goods and services in support of both programs.

      Official NASA portrait of Portia Keyes.NASA It has also given her a chance to use some of what she learned from her Russian language course. One of Keyes’ favorite NASA projects involved negotiating a contract modification with Roscosmos to secure transportation of NASA astronauts to the International Space Station via Soyuz spacecraft following the space shuttle’s retirement. “This project stands out to me both for its impact on NASA’s missions and the way it transcended political and geographical boundaries,” Keyes said. Being a part of this effort reinforced the importance of collaboration on a global scale. “It demonstrated how shared goals and values can unite people across different nations, regardless of external circumstances,” she said. “The world is more connected than we often realize.”

      Keyes values collaboration on a smaller scale, as well, noting that her procurement role involves working with a wide variety of subject matter experts who are passionate about their respective fields. She acknowledged that procurement staff are sometimes seen as obstructing or slowing a mission rather than enabling it, although she has overcome this challenge through effective communication with stakeholders – striving to understand their perspectives and present mutually beneficial solutions.

      “My commitment is to advancing NASA’s missions through the responsible management of taxpayer dollars,” she said. “Collaborating closely with my technical counterparts, I have been able to secure mission-critical services and supplies, all while adhering to regulatory, schedule, and resource constraints.”

      Keyes poses for a picture outside of NASA Headquarters in Washington, D.C. Image courtesy of Portia Keyes Adaptability has also been important to Keyes’ success. “Whether it’s shifting priorities due to unforeseen challenges, navigating cultural differences within international teams, or adjusting to new acquisition regulations, being flexible and open to change has allowed me to not just survive in dynamic environments, but thrive,” she said.

      At the same time, Keyes strives to maintain balance in the workplace. “What I have learned about myself is that I can do anything, but not everything,” she said. “Maturing in my career has meant accepting that I have limited time, energy, and resources, so it is important to discern what truly matters and focus my efforts there.”

      Portia Keyes, fourth from left, received a JSC Director’s Commendation Award in June 2024 for significant contributions to Johnson’s Office of Procurement. From left are Johnson Associate Director for Vision and Strategy Douglas Terrier, Office of Procurement Director Brad Niese, Office of Procurement Functional Lead Candice Palacios-Hoang, Keyes, and Johnson Director Vanessa Wyche.NASA Keyes’ hard work has been recognized with several awards throughout her career. She is proudest of earning the Office of Procurement Bubbee’s Coach Award, which is given to the team member most likely to serve as a mentor to colleagues. “Much of my professional and personal growth has stemmed from formal and informal mentors who supported me in navigating challenges, developing new skills, and creating environments for me to thrive,” she said. “I have a great appreciation for those mentors, and I strive to impact those around me similarly.”

      Keyes hopes to encourage the Artemis Generation to approach the future – and periods of uncertainty – with curiosity, resilience, and a responsibility to care for our planet and the universe. She looks forward to the continued expansion of access to space.

      “I hope to be around for the days where I can afford a reasonably priced, roundtrip ticket to the Moon,” she said. “Perhaps by then they will sell functional spacesuits in the local sporting goods stores.”
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon. NASA/Brandon Torres Navarrete Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input. 
      NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives. 
      “The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”  
      What Are Distributed Space Missions? 
      Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.  
      Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.  
      Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures. 
      The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit. 
      Experimenting With DSA in Low Earth Orbit
      The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.  
      “We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”  
      The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. 
      During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.   
      Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations. 
      “Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. NASA/Brandon Torres Navarrete Scaling Up Swarms in Virtual Lunar Orbit  
      The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.   
      The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.  
      The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity. 
      Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible. 
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project. 
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Ames Research Center CubeSats Game Changing Development Program Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read NASA Awards Contract for Airborne Science Flight Services Support
      Article 23 hours ago 4 min read NASA Flight Tests Wildland Fire Tech Ahead of Demo
      Article 4 days ago 4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      STMD Small Spacecraft Technology
      Starling
      View the full article
  • Check out these Videos

×
×
  • Create New...