Members Can Post Anonymously On This Site
Ariane 6 development: progress on all fronts
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Beik.pdf
Omid Beik
Colorado School of Mines
This project will design a power management and distribution (PMAD) system that can be coupled with a megawatt-scale nuclear power generation system for nuclear electric propulsion (NEP) that is suitable for a Mars mission. The system will include all needed components including a dual rotor generator and power rectifier. The overall design will be optimized and validated with a smaller-scale (10kW) experiment that will be built and tested in the laboratory.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A digital rendering of the baseline configuration for Blue Origin’s free-flying commercial space station, Orbital Reef, which continues to be developed as part of a Space Act Agreement with NASA.Blue Origin A NASA-supported commercial space station, Blue Origin’s Orbital Reef, recently completed a human-in-the-loop testing milestone as the agency works toward developing commercial space stations in low Earth orbit.
The human-in-the-loop test scenarios utilized individual participants or small groups to perform day-in-the-life walkthroughs in life-sized mockups of major station components. Participants provided feedback while simulating microgravity operations, including cargo transfer, trash transfer, stowage, and worksite assessments.
“Human-in-the-loop and iterative testing are essential to inform key decisions and mitigate risks to crew health and safety,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “NASA’s insight into our partner’s testing milestones enables the agency to gain insight into partner progress and share expertise, ultimately improving industry and NASA’s mission success.”
Test subjects in the mockup for Blue Origin’s free-flying commercial space station, Orbital Reef, during the human-in-the-loop test.Blue Origin The milestone is part of a NASA Space Act Agreement originally awarded to Blue Origin in 2021 and focused on the design progress for multiple worksites, floors, and translation paths within the station. This ensures a commercial station can support human life, which is critical to advancing scientific research in a microgravity environment and maintaining a continuous human presence in low Earth orbit.
The test evaluated various aspects of Orbital Reef’s environment to provide information needed for the space station’s design. Assessment areas included the private crew quarters, dining area, lavatory, research laboratory, and berthing and docking hatches.
To facilitate the test, Blue Origin built stand-alone mockups of each floor in the internally developed habitable module. These mockups will be iteratively updated as the fidelity of components and subsystems matures, enabling future human-in-the-loop testing.
The research team’s observations will be used to provide design recommendations for worksite volumes, layouts, restraint and mobility aid layouts, usability and workload, and positioning of interfaces and equipment.
NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will soon be followed by the procurement of services from one or more companies, where NASA aims to be one of many customers for low Earth orbit stations.
NASA is committed to maintaining a continuous human presence in low Earth orbit as the agency transitions from the International Space Station to commercial space stations. For nearly 25 years, NASA has supported a continuous presence in low Earth orbit aboard the space station and will continue to build on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals.
For more information about commercial space stations, visit:
www.nasa.gov/commercialspacestations
A test subject in the mockup for Blue Origin’s free-flying commercial space station, Orbital Reef, during the human-in-the-loop test.Blue Origin Keep Exploring Discover More Topics
Low Earth Orbit Economy
Commercial Space
Commercial Crew Program
Humans In Space
View the full article
-
By NASA
Robert Markowitz The four astronauts who will be the first to fly to the Moon under NASA’s Artemis campaign have designed an emblem to represent their mission that references both their distant destination and the home they will return to. The crew unveiled their patch in this April 2, 2025, photo.
The crew explained the patch’s symbolism, and its play on the abbreviation of Artemis II to AII, with the following description: The Artemis II test flight begins when a mighty team launches the first crew of the Artemis generation. This patch designates the mission as “AII,” signifying not only the second major flight of the Artemis campaign, but also an endeavor of discovery that seeks to explore for all and by all. Framed in Apollo 8’s famous Earthrise photo, the scene of the Earth and the Moon represents the dual nature of human spaceflight, both equally compelling: The Moon represents our exploration destination, focused on discovery of the unknown. The Earth represents home, focused on the perspective we gain when we look back at our shared planet and learn what it is to be uniquely human. The orbit around Earth highlights the ongoing exploration missions that have enabled Artemis to set sights on a long-term presence on the Moon and soon, Mars.
Commander Reid Wiseman, pilot Victor Glover, and mission specialist Christina Koch from NASA, and mission specialist Jeremy Hansen from CSA (Canadian Space Agency), will venture around the Moon in 2026 on Artemis II. The 10-day flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket, Orion spacecraft, for the first time with astronauts. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
Text credit: Brandi Dean, Courtney Beasley
Image credit: NASA/Robert Markowitz
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
“If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.
As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
“There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
The Department of the Air Force provided guidance March 19 for military members and civilian employees who are presently on TDY, traveling on PCS orders, or scheduled to begin such travel for A1-sponsored training.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.