Jump to content

Science Launching on Northrop Grumman's 15th Resupply Mission


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Download Press Kit (PDF) Return to CLPS Homepage
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 8 min read
      AGU 2024: NASA Science on Display in the Nation’s Capital
      Introduction
      The American Geophysical Union (AGU) returned to the nation’s capital in 2024, hosting its annual meeting at the Walter E. Washington Convention Center in Washington, DC from December 9–14, 2024. NASA Science upheld its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share NASA’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts as detailed in the essay that follows – see Photo 1. Visitors also watched live Hyperwall presentations and collected NASA Science outreach materials, such as the 2025 NASA Science Planning Guide.
      Photo 1. Paulo Younse [NASA/Jet Propulsion Laboratory (JPL), Robotics Systems Group—Engineer,] poses with a model of the sample tube he designed for the caching architecture that was used on NASA’s Mars Sample Return mission. Photo credit: NASA Highlights from the NASA Science Exhibit
      NASA Hyperwall Stories
      The NASA Hyperwall has been a focal point of the agency’s outreach efforts for over two decades, serving as both a powerful storytelling platform and the primary vehicle through which the public engages with the award-winning visualizations published by NASA’s Scientific Visualization Studio (SVS) – see Photo 2. Forty-nine NASA mission scientists and program representatives shared NASA science with the public from the Hyperwall stage during AGU24. NASA leadership shared mission news and outlined upcoming research across all five of the NASA Science divisions: Earth science, planetary science, heliophysics, astrophysics, and biological and physical sciences – see Photos 3–8. A catalog of NASA project scientists and mission representatives, who provided colorful overviews of everything from NASA’s Mars Sample Return to the Parker Solar Probe’s historic flyby of the Sun, delivered additional presentations. 
      Photo 2. Mark Subbarao [NASA GSFC—Director of NASA’s Scientific Visualization Studio] highlighted key visualizations produced by NASA’s Scientific Visualization Studio during 2024 and presented them as a countdown of the top 10 visualizations of the year. Photo credit: NASA The complete AGU24 Hyperwall schedule is available at this link. Readers can view YouTube videos of the presentations via links over the individual names in the photo captions below.
      Photo 3. Nicola Fox [NASA HQ—Associate Administrator of Science Mission Directorate] kicked off the week’s Hyperwall storytelling series by sharing 12 images selected for the 2025 NASA Science Planning Guide. Each image underscores the beauty of the natural world and the inherent value of scientific endeavors undertaken not only at NASA but by citizens around the globe. Photo credit: NASA Photo 4. Karen St. Germain [NASA HQ—Director of the Earth Science Division] provided audience members with an overview of NASA’s Earth Science Division – including the latest science from the Plankton, Aerosol, Cloud, and Ecosystems (PACE) mission. Photo credit: NASA Photo 5. Jack Kaye [NASA HQ—Director of the Airborne Science Program] highlighted key airborne science missions that flew in 2024 and demonstrated the broad list of airborne satellites and instruments and how their applications enable the advancement of Earth science research around the globe. Photo credit: NASA Photo 6. Joseph Westlake [NASA HQ—Director of the Heliophysics Division] delivered a talk in front of the NASA Hyperwall that captured the groundbreaking research that NASA has planned for the culmination of the Heliophysics Big Year, including mission news related to the Parker Solar Probe, Interstellar Mapping and Acceleration Probe (IMAP), and Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS). Photo credit: NASA Photo 7. Mark Clampin [NASA HQ—Director of the Astrophysics Division] gave AGU attendees a glimpse of NASA missions that will help researchers around the globe observe distant worlds and answer profound questions about the physics of the universe beyond our solar system. His presentation centered around the impact of the upcoming Nancy Grace Roman Telescope and Habitable Worlds Observatory (HWO). Photo credit: NASA Photo 8. Lisa Carnell [NASA HQ—Director of the Biological Sciences Division], who sits at the helm of NASA’s newest scientific division, gave an overview of the current and future NASA research that is enhancing our understanding of how humans can live and work in space. Photo credit: NASA During AGU, NASA also celebrated the winners of the 2024 AGU Michael Freilich Student Visualization Competition, an annual competition honoring former NASA Earth Science Division director Michael Freilich that inspires students to develop creative strategies for effectively communicating complex scientific problems – see Photo 9. See the summary of “Symposium on Earth Science and Applications from Space…” [The Earth Observer, Mar–Apr 2020, Volume 32 Issue 3, 4–18] to learn more about Freilich’s career at NASA and impact on Earth science.  A list of the award’s past recipients, dating back to the 2016, is published on AGU’s website.
      Photo 9a. In partnership with AGU, student winners of the 2024 AGU Michael Freilich Student Visualization Competition received prizes and presented their work at the NASA hyperwall stage. Steve Platnick [NASA GSFC—Research Scientist for Earth Science Division ] [left with back to camera] congratulates Caitlin Haedrich [NC State University—Ph.D. candidate, contest winner (CW)]. Photo credit: NASA Photo 9b. Standing on the NASA Hyperwall stage [left to right] are Erik Hankin [AGU—Assistant Director of Career and Student Programs], Barry Lefer [NASA HQ—Program Manager for the Tropospheric Composition Program (TCP)], Mya Thomas [University of Missouri-Kansas City—Undergraduate Student.  CW], Mariliee Karinshak [Washington University in St. Louis—Undergraduate Student, CW], Swati Singh [Auburn University—PhD Candidate, CW], Crisel Suarez [Vanderbilt University—PhD Candidate, CW], and Steve Graham [GSFC/Global Science & Technology Inc.—NASA Science Support Office Task Leader]. Photo credit: NASA Photo 9c. Patrick Kerwin [University of Arizona—Graduate Student, CW] delivers his award-winning talk titled Earth Observation for Disaster Response: Highlighting Applied Products. Photo credit: NASA




      Face-to-face With NASA Experts
      AGU opened its exhibit hall to the public at 10:00 AM on December 9. Thousands of eager attendees poured into the space to engage with exhibit staff, representing a variety of universities, research institutions, and private organizations from around the world.
      Photo 10. AGU attendees explore the NASA Science exhibit space shortly after the exhibit hall opened on December 9. Photo credit: NASA Photo 11a. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA Photo 11b. AGU meeting participants anticipate the distribution of the NASA Science Planning Guide each year, which features artwork from Science Mission Directorate (SMD) art director Jenny Mottar and a collection of science images curated by SMD leadership. Photo credit: NASA




      NASA Science welcomed AGU attendees, who gathered within the perimeter of the exhibit shortly after opening – see Photo 10 – where NASA staff distributed the 2025 NASA Science Planning Guide – see Photo 11.
      Attendees filtered through the NASA Science booth by the thousands, where more than 130 outreach specialists and subject matter experts from across the agency were available to share mission-specific science and interface directly with members of the public – see Photos 12–15.
      Photo 12. The NASA Science booth included a collection of exhibit tables, where mission scientists and outreach specialists shared information and materials specific to various NASA missions and programs. Photo credit: NASA Photo 13. Outreach specialists from NASA’s Dragonfly mission, which plans to send a robotic aircraft to the surface of Saturn’s moon Titan, speak with attendees in front of a to-scale model of the aircraft. Photo credit: NASA Photo 14. Staff from NASA’s astrobiology program share a collection of graphic novels produced by graphic artist Aaron Gronstal, highlighting the research that the program conducts to answer important questions about the origin, evolution, and distribution of life in the universe. Photo credit: NASA Photo 15. Exhibit staff and AGU attendees interact with three-dimensional (3D) models of NASA spacecraft and technology in augmented reality. Photo credit: NASA AGU attendees met with project scientists and experts at a new exhibit, called “Ask Me Anything.” The discussions spanned a variety of NASA missions, including Mars Sample Return, James Webb Space Telescope, and Parker Solar Probe, with specialists from these and other missions who spoke during the sessions – see Photo 16. An installation of NASA’s Earth Information Center also made an appearance at AGU24, providing attendees with additional opportunities to speak with Earth scientists and learn more about NASA research – see Photo 17.
      Photo 16. NASA Heliophysicists discuss solar science with AGU attendees at the “Ask Me About Heliophysics” table. Photo credit: NASA Photo 17. At the Earth Information Center, attendees spoke with NASA staff about the various ways that NASA keeps tabs on the health of Earth’s atmosphere, oceans, and landmasses from space. Photo credit: NASA 2024 SMD Strategic Content and Integration Meeting
      As they have done for many years now, staff and leadership from NASA’s Science Mission Directorate (SMD) Engagement Branch convened in Washington, DC on December 8 (the day before the Fall AGU meeting began) to discuss agency communications and outreach priorities. This annual meeting provided personnel from each of SMD’s scientific divisions a valuable opportunity to highlight productive strategies and initiatives from the previous calendar year and chart a path for the year ahead. During the single-day event, team leaders shared information related to NASA’s web-modernization efforts, digital outreach strategies, and exhibit presence. Approximately 150 in-person and 50 online NASA staff joined the hybrid meeting.
      After a welcome from Steve Graham [GSFC/GST—NASA Science Support Office Task Leader], who covered meeting logistics, the participants heard from NASA Headquarters’ SMD Engagement and Communication representatives throughout the day. 
      Amy Kaminski [Engagement Branch Chief], who recently replaced Kristen Erickson in this role, used this opportunity to more formally introduce herself to those who might not know her and share her visions for engagement. Karen Fox [Senior Science Communications Official] discussed the evolution of communication for SMD missions over the past decade – moving from siloed communications a decade ago that very much focused on “my mission,” to a much more cooperation between missions and focus on thematic communications. Following up on Kaminski’s remarks that gave an overall vision for engagement, and Fox’s remarks about how having a vision will help streamline our messaging, Alex Lockwood [Strategic Messaging and Engagement Lead] delved into the nuts and bolts of strategic planning, with focus on the use of work packages and memorandums of understanding for promoting upcoming missions.
      After the leadership set the tone for the meeting, Emily Furfaro [NASA Science Digital Manager] gave a rapid tour of many of NASA’s digital assets intended to give participants an idea of the vast resources available for use. Diana Logreira [NASA Science Public Web Manager] then laid out some principles to be followed in developing unified vision for the NASA Science public web experience.
      In the afternoon, there were individual breakout sessions for the Earth Science, Planetary Science, and Heliophysics divisions. These sub-meetings were led by Ellen Gray, Erin Mahoney, and Deb Hernandez, Engagement Leads for Earth Science, Heliophysics, and Planetary Sciences respectively.  These breakout sessions afforded participants with an opportunity to focus on ideas and goals specific to their own divisions for 2025. In the Earth Science breakout session, participants heard from other several other speakers who discussed the beats, or content focus areas, that had been chosen for Earth Science Communications in 2024 – including oceans and Earth Action (formerly known as Applied Sciences) – and those that have been identified for 2025: technology, land science, and continued focus on Earth Action.
      Photo 18a. NASA Science Mission Directorate staff gathers in Washington, DC ahead of AGU for the annual meeting, where in-person attendees hear from leadership and work collaboratively to refine communications strategies for 2025.  Photo credit: NASA Photo 18b. Joseph Westlake [NASA HQ—Heliophysics Division Director] discusses division-specific goals with Heliophysics communication leads during the division’s “breakout session.” Photo credit: NASA Photo 18c. Science Mission Directorate leadership fields questions from SMD staff during the end-of-meeting panel discussion. Photo credit: NASA




      After participants reconvened from the breakouts, Nicola Fox [Associate Administrator, Science Mission Directorate] gave a mid-afternoon presentation in which she presented her perspective on integrated NASA science, which led into a one-hour “Ask Us” panel with Division Directors to conclude the meeting. Participants included: Mark Clampin [Astrophysics], Lisa Carnell [Biological], Julie Robinson [Earth Science, Deputy], Joe Westlake [Heliophysics], John Gagosian [Joint Agency Satellite], Charles Webb [Planetary Science, Acting].
      Based on this meeting, and other communications guidance from NASA HQ, a few general SMD/Earth Science content and engagement priorities for 2025 have emerged. They include:
      continuing to develop stories and products related to the three primary beats for 2025: technology, land, and Earth action; emphasizing the value of SMD science as a whole or system of connected divisions, promoting cross-divisional science; increasing the use of social media as a vehicle to share NASA missions and programs with diverse audiences; focusing on critical – and high-profile – ongoing missions [e.g., Parker Solar Probe, Europa Clipper, Plankton Aerosols, Cloud and ocean Ecosystem (PACE)] and upcoming launches [ARTEMIS and NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR)]; fostering collaborations and partnerships with agencies and institutions, e.g. instillation of the Earth Information Center at the Smithsonian Museum of Natural History; and improving the visitor and guest experience at NASA centers, including Kennedy Space Center launches. Conclusion
      The NASA exhibit is an important component of the agency’s presence at AGU, and NASA leverages its large cohort of scientists who participate in the exchange of information and ideas outside of the exhibit hall – in plenary meetings, workshops, poster sessions, panels, and informal discussions. AGU sessions and events that featured NASA resources, scientists, and program directors included the Living with a Star Town Hall, NASA’s Early Career Research Program, NASA’s Sea Level Change Team: Turning Research into Action, and many more. Click here for the complete list of NASA-related events at AGU24.
      As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. Just as they did in 2024, the agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in the fields of Earth and space science.
      The 2025 AGU annual meeting will be held at the New Orleans Ernest N. Morial Convention Center, in New Orleans, LA, from December 15–19, 2025. See you there.
      Nathan Marder
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      nathan.marder@nasa.gov
      Share








      Details
      Last Updated Feb 25, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      4 Min Read Science in Orbit: Results Published on Space Station Research in 2024
      NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions.
      Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.
      Making stronger cement
      NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions.
      European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.NASA Creating Ideal Clusters
      The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices.
      A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. JAXA/ Nagoya City University Controlling Bubble Formation
      NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles.
      High-speed video shows dozens of bubbles growing in microgravity until they collapse.Tengfei Luo Evaluating Cellular Responses to Space
      The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance.
      Fluorescent staining of cells from microgravity (left) and ground control (right).ESA Improving Spatial Awareness
      The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts.
      An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.NeuroLab Monitoring low Earth orbit
      The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities.
      The Mini-EUSO telescope is shown in early assembly.JEM-EUSO Program For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.

      Destiny Doran
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research Results
      Humans In Space
      Space Station Research and Technology
      Space Station Research and Technology Resources

      View the full article
    • By NASA
      Improving space-based pharmaceutical research
      View of the Ice Cubes experiment #6 (Kirara) floating in the Columbus European Laboratory module aboard the International Space Station.UAE (United Arab Emirates)/Sultan Alneyadi Researchers found differences in the stability and degradation of the anti-Covid drug Remdesivir in space and on Earth on its first research flight, but not on a second. This highlights the need for more standardized procedures for pharmaceutical research in space.

      Long-term stability of drugs is critical for future space missions. Because multiple characteristics of spaceflight could influence chemical stability, the scientists repeated their experiment under circumstances as nearly identical as possible. This research used Kirara, a temperature-controlled incubator developed by JAXA (Japan Aerospace Exploration Agency) for crystallizing proteins in microgravity. Results also confirmed that a solubility enhancer used in the drug is radiation resistant and its quality was not affected by microgravity and launch conditions.

      Evaluating postflight task performance
      A test subject performing a sensorimotor field test on the ground.NASA/Lauren Harnett Immediately after returning from the International Space Station and for up to one week, astronauts perform functional tasks in ways similar to patients on Earth who have a loss of inner ear function. This finding suggests that comparing data from these patients and astronauts could provide insight into the role of the balance and sensory systems in task performance during critical parts of a mission such as landing on the Moon or Mars.   

      Spaceflight causes changes to the balance (vestibular) and sensory systems that can lead to symptoms such as disorientation and impaired locomotion. Standard Measures collects a set of data, including tests of sensorimotor function, related to human spaceflight risks from astronauts before, during, and after missions to help characterize how people adapt to living and working in space.

      View the full article
    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Similar Videos

  • Check out these Videos

×
×
  • Create New...