Jump to content

Recommended Posts

Posted
Meeting_Mercury_card_full.jpg Video: 00:01:01

A beautiful sequence of 53 images taken by the monitoring cameras on board the ESA/JAXA BepiColombo mission as the spacecraft made its first close flyby of its destination planet Mercury on 1 October 2021.
The compilation includes images from two of the three Monitoring Cameras (MCAM) onboard the Mercury Transfer Module, which provides black-and-white snapshots at 1024 x 1024 pixel resolution. It is not possible to image with the high-resolution camera suite during the cruise phase. The MCAMs also capture parts of the spacecraft: MCAM-2 sees the medium-gain antenna and magnetometer boom, while the high-gain antenna is in the MCAM-3 field-of-view.

The sequence opens with the closest images acquired by MCAM-2 and MCAM-3, taken at a distance of around 1000 km from the surface of the planet. Closest approach at 199 km took place about five minutes earlier, at 23:34:41 UTC.

During the half hour following the close approach, imaging alternated between the two cameras. In general, MCAM-2 pointed towards the northern hemisphere of Mercury, while MCAM-3 pointed towards the southern hemisphere. Thus the subsequent images show a set of complementary views from each camera in turn, ranging from a distance of about 2420 km to 6140 km from the surface of Mercury. In these relatively close images, it is possible to identify prominent impact craters, scarps, and other geological features that BepiColombo will study in more detail once in orbit around the planet at the end of 2025.

The final part of the compilation illustrates BepiColombo's departure from Mercury as the spacecraft changed attitude along its trajectory, giving the impression Mercury's apparent movement changes direction. The final image was taken at 03:03:49 UTC on 2 October from a distance of approximately 93 thousand kilometres. The final departure sequence has been speeded up by a factor of about 900.

Several different exposure times were used throughout the imaging sequence in order to try and capture the rapidly-varying brightness of Mercury, and in some cases the spacecraft and/or the planet are overexposed, particularly in the final departure sequence. Optical and electronic artefacts are also visible in some images.
The gravity assist manoeuvre was the first at Mercury and the fourth of nine flybys overall. During its seven-year cruise to the smallest and innermost planet of the Solar System, BepiColombo makes one flyby at Earth, two at Venus and six at Mercury to help steer it on course to arrive in Mercury orbit in 2025. The Mercury Transfer Module carries two science orbiters: ESA’s Mercury Planetary Orbiter and JAXA’s Mercury Magnetospheric Orbiter. They will operate from complementary orbits to study all aspects of mysterious Mercury from its core to surface processes, magnetic field and exosphere, to better understand the origin and evolution of a planet close to its parent star.

Credit: ESA/BepiColombo/MTM, CC BY-SA 3.0 IGO; Music composed and performed by Anil Sebastian and Ingmar Kamalagharan.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      On 1 December 2024, BepiColombo flew past Mercury for the fifth time. During this flyby, BepiColombo became the first spacecraft ever to observe Mercury in mid-infrared light. The new images reveal variations in temperature and composition across the planet's cratered surface.
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 4 min read
      2024 AGU Fall Meeting Hyperwall Schedule
      NASA Science at AGU Fall Meeting Hyperwall Schedule, December 9-12, 2024
      Join NASA in the Exhibit Hall (Booth #719) for Hyperwall Storytelling by NASA experts. Full Hyperwall Agenda below.
      ***Copies of the 2025 NASA Science Calendar will be distributed at the NASA Exhibit at the start of each day.***
      MONDAY, DECEMBER 9 
      3:20 – 3:40 PM From Stars to Life: The Power of NASA Science Dr. Nicola Fox 3:40 – 4:00 PM NASA Planetary Science Division: 2024 Highlights Eric Ianson (PSD Deputy Director) 4:00 – 4:20 PM NASA Earth Science Overview Dr. Karen St. Germain 4:20 – 4:40 PM NASA Astrophysics: Looking Forward Dr. Mark Clampin 4:40 – 5:00 PM Helio Big Year Wind-Down and a Look Ahead Dr. Joseph Westlake 5:00 – 5:20 PM NASA Biological & Physical Sciences Overview Dr. Lisa Carnell 5:20 – 5:40 PM Astrobiology: The Science, The Program, and The Work Dr. Becky McCauley Rench TUESDAY, DECEMBER 10
      10:15 – 10:30 AM Integration of Vantage Points and Approaches by NASA Earth Science Division Dr. Jack Kaye 10:30 – 10:45 AM Life after launch: A Snapshot of the First 9 Months of NASA’s PACE Mission Jeremy Werdell 10:45 – 11:00 AM Foundation Model in Earth Science: Towards Earth Science to Action Tsengdar Lee 11:15 – 11:30 AM NASA’s Office of the Chief Science Data Officer: Supporting a More Equitable, Impactful, and Efficient Scientific Future Kevin Murphy 11:30- 11:45 AM 30 Years of GLOBE: Advancing Earth System Science, Education, and Public Engagement Amy P. Chen 11:45 – 12:00 PM 2024 NASA Visualization Highlights Mark Subbarao 12:30 – 1:45 PM Grand Prize Winners of 2024 AGU Michael H. Freilich Student Visualization Competition Introductory Remarks from AGU & NASA Steve Platnick Thawing History: Retracing Arctic Expeditions in a Warming World Dylan Wootton Monitoring the Weather in Near Real-Time with Open-Access GOES-R Data Jorge Bravo Mitigating Agricultural Runoff with Tangible Landscape Caitlin Haedrich Earth Observation for Disaster Response: Highlighting Applied Products Patrick Kerwin 2:15 – 2:30 PM Water Science to Water Action John Bolten 2:30 – 2:45 PM Analyzing Space Weather at Mars  Gina DiBraccio, Jamie Favors 2:45 – 3:00 PM NASA Airborne in the Arctic: An overview of the NASA Arctic Radiation-Cloud-aerosol-Surface-Interaction eXperiment (ARCSIX) Patrick Taylor 3:00 – 3:15 PM Science Activation and the 2023-24 Eclipses Lin Chambers 3:30 – 3:45 PM Tracking Extreme Fires in 2024 Douglas Morton 3:45 – 4:00 PM BioSCape: A Biodiversity Airborne Campaign in South Africa Anabelle Cardoso 4:00 – 4:15 PM U.S. Greenhouse Gas Center Lesley Ott 4:15 – 4:30 PM Data Governance and Space Data Ethics in the Era of AI: NASA Acres at the Leading Edge Alyssa Whitcraft, Todd Janzen 5:00 – 5:15 PM Global GEOS Forecasts of Severe Storms and Tornado Activity Across the United States William Putman 5:15 – 5:30 PM NASA Earth Action Empowering Health and Air Quality Communities John Haynes 5:30 – 5:45 PM The Habitable Worlds Observatory Megan Ansdell WEDNESDAY, DECEMBER 11
      10:15 – 10:30 AM From Orbit to Earth: Exploring the LEO Science Digest Jeremy Goldstein 10:30 – 10:45 AM Hello, Hello Again: How Lunar Samples Introduced Us to the Solar System, and What We’ll Learn When We Meet Again Dr. Barbara Cohen 10:45 – 11:00 AM Planetary Defenders: How NASA Safeguards Earth from Asteroids Kelly Fast 11:15 – 11:30 AM Bringing Science Data Home Philip Baldwin 11:30 – 11:45 AM Fast-Tracking Earth System Science into Action: The Vision for the Integrated Earth System Observatory Cecile Rousseaux 11:45 – 12:00 PM A Decade of Monitoring Atmospheric CO2 from Space Junjie Liu 12:30 – 1:45 PM Grand Prize Winners of 2024 AGU Michael H. Freilich Student Visualization Competition Introductory Remarks from AGU & NASA Dr. Jack Kaye Photogrammetric Modeling and Remote Identification of Small Lava Tubes in the 1961 Lava Flow at Askja, Iceland Mya Thomas Monitoring Air Quality Using MODIS and CALIPSO Data in Conjunction with Socioeconomic Data to Map Air Pollution in Hampton Roads Virginia Marilee Karinshak Visualizing UAV-Based Detection and Severity Assessment of Brown Spot Needle Blight in Pine Forests Swati Singh Different Temperatures of a Solar Flare Crisel Suarez 2:15 – 2:30 PM Ancient and Modern Sun Gazing: New view of our star as seen by CODEX and upcoming missions MUSE, PUNCH and SunRISE Dr. Nicholeen Viall, Dr. Jeff Newmark 2:30 – 2:45 PM A Stroll Through The Universe of NASA Citizen Science Sarah Kirn 2:45 – 3:00 PM OSIRIS-REx Returned Samples from the Early Solar System Jason Dworkin 3:00 – 3:15 PM To the Moon, Together: Ensuring Mission Success in an Increasingly Busy Lunar Environment Therese Jones 3:30 – 3:45 PM What Goes Around Comes Around – Repeating Patterns in Global Precipitation George Huffman 3:45 – 4:00 PM Parker Solar Probe: Thriving, Surviving, and Exploring our Sun to Make Paradigm Shifting Discoveries Nour Rawafi, Betsy Congdon 4:00 – 4:15 PM Europa Clipper Curt Niebur 4:15 – 4:30 PM Roman Space Telescope and Exoplanets Rob Zellem 5:00 – 5:15 PM Mars Exploration: Present and Future Dr. Lindsay Hays 5:15 – 5:30 PM Superstorm: The surprise entry into the Helio Big Year celebration of the Sun, and possibly a foreshadowing of what’s to come during Solar Maximum Kelly Korrek 5:30 – 5:45 PM From EARTHDATA to Action: Enabling Earth Science Data to Serve Society Katie Baynes THURSDAY, DECEMBER 12
      10:15 – 10:30 AM Geospace Dynamics Constellation: The Space Weather Rosetta Stone Katherine Garcia-Sage, Doug Rowland 10:30 – 10:45 AM Future of Magnetosphere to Ionosphere Coupling Lara Waldrop, Skyler Kleinschmidt, Sam Yee 10:45 – 11:00 AM NASA ESTO: Launchpad for Novel Earth Science Technologies Michael Seablom 11:00 – 11:15 AM From Leaf to Orbit: NASA Research Reveals the Changing Northern Landscape Dr. Liz Hoy 11:30 – 11:45 PM OpenET: Filling a Critical Data Gap in Water Management Forrest Melton 11:45 – 12:00 PM Dragonfly: Flights of Exploration Across Saturn’s Moon Titan, an Organic Ocean World Zibi Turtle 12:00 – 12:15 PM Venus and DAVINCI Natasha Johnson 12:15 – 12:30 PM IMAP: The Modern-Day Celestial Cartographer Prof. David J. McComas Share








      Details
      Last Updated Dec 04, 2024 Related Terms
      Earth Science View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Virtual meetings feeling a little stale? NASA has just unveiled a suite of new Artemis backgrounds to elevate your digital workspace.

      From the majesty of the Artemis I launch lighting up the night sky to the iconic image of the Orion spacecraft with the Moon and Earth in view, these virtual backgrounds allow viewers to relive the awe-inspiring moments of Artemis I and glimpse the bright future that lies ahead as the Artemis campaign enables humans to live and work at the Moon’s South Pole region.

      Scroll through to download your next virtual background for work, school, or just for fun, and learn about all things Artemis as the agency and its partners cross off milestones leading up to Artemis II and missions beyond.

      Artemis I Launch
      Credit: NASA/Bill Ingalls NASA’s SLS (Space Launch System) rocket carrying the Orion spacecraft launches on the Artemis I flight test on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I mission was the first integrated flight test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and ground systems. SLS and Orion launched at 1:47 a.m. EST from Launch Pad 39B at Kennedy.
      Artemis II Crew
      Credit: NASA Meet the astronauts who will fly around the Moon during the Artemis II mission. From left are Commander Reid Wiseman, Pilot Victor Glover, and Mission Specialist Christina Koch from NASA, and Mission Specialist Jeremy Hansen from the Canadian Space Agency.
      Astronaut Regolith
      Credit: NASA An artist’s concept of two suited Artemis crew members working on the lunar surface. The samples collected during future Artemis missions will continue to advance our knowledge of the solar system and help us understand the history and formation of Earth and the Moon, uncovering some of the mysteries that have long eluded scientists.
      Exploration Ground Systems
      Credit: NASA NASA’s mobile launcher, atop Crawler Transporter-2, is at the entrance to High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018, at NASA’s Kennedy Space Center in Florida. This is the first time that the modified mobile launcher made the trip to the pad and the VAB. The mobile launcher is the structure that is used to assemble, process, and launch the SLS rocket.
      Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen atop a mobile launcher at Launch Pad 39B on Nov. 4, 2022, as Crawler Transporter-2 departs the pad following rollout at NASA’s Kennedy Space Center in Florida.
      Credit: NASA After Orion splashed down in the Pacific Ocean, west of Baja California, the spacecraft was recovered by personnel on the USS Portland from the U.S. Department of Defense, including Navy amphibious specialists, Space Force weather specialists, and Air Force specialists, as well as engineers and technicians from NASA’s Kennedy Space Center in Florida, the agency’s Johnson Space Center in Houston, and Lockheed Martin Space Operations. Personnel from NASA’s Exploration Ground Systems led the recovery efforts.
      Credit: NASA/Keegan Barber NASA’s SLS (Space Launch System) rocket with the Orion spacecraft aboard is seen atop a mobile launcher as it rolls out to Launch Complex 39B for the first time on March 17, 2022, at NASA’s Kennedy Space Center in Florida. At left is the Vehicle Assembly Building.
      First Woman
      Credit: NASA “First Woman” graphic novel virtual background featuring an illustration of the inside of a lunar space station outfitted with research racks and computer displays. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
      Credit: NASA “First Woman” graphic novel virtual background featuring the illustration of the inside of a lunar space station outfitted with research racks and computer displays, along with zero-g indicator suited rubber duckies floating throughout. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
      Credit: NASA This “First Woman” graphic novel virtual background features an illustrated scene from a lunar mission. At a lunar camp, one suited astronaut flashes the peace sign while RT, the robot sidekick, waves in the foreground. To learn more about the graphic novel and interactive experiences, visit: nasa.gov/calliefirst/
      Gateway
      Credit: NASA The Gateway space station hosts the Orion spacecraft and SpaceX’s deep space logistics spacecraft in a polar orbit around the Moon, supporting scientific discovery on the lunar surface during the Artemis IV mission.
      Credit: Northrop Grumman and Thales Alenia Space The Gateway space station’s HALO (Habitation and Logistics Outpost) module, one of two of Gateway’s habitation elements where astronauts will live, conduct science, and prepare for lunar surface missions, successfully completed welding in Turin, Italy. Following a series of tests to ensure its safety, the future home for astronauts will travel to Gilbert, Arizona, for final outfitting ahead of launch to lunar orbit. Gateway will be humanity’s first space station in lunar orbit and is an essential component of the Artemis campaign to return humans to the Moon for scientific discovery and chart a path for human missions to Mars.
      Lunar Surface
      Credit: SpaceX Artist’s concept of SpaceX Starship Human Landing System, or HLS, which is slated to transport astronauts to and from the lunar surface during Artemis III and IV.
      Credit: Blue Origin Artist’s concept of Blue Origin’s Blue Moon MK-2 human lunar lander, which is slated to land astronauts on the Moon during Artemis V.
      Credit: NASA The “Moon buggy” for NASA’s Artemis missions, the Lunar Terrain Vehicle (LTV), is seen here enabling a pair of astronauts to explore more of the Moon’s surface and conduct science research farther away from the landing site. NASA has selected Intuitive Machines, Lunar Outpost, and Venturi Astrolab to advance capabilities for an LTV.
      Credit: JAXA/Toyota An artist’s concept of the pressurized rover — which is being designed, developed, and operated by JAXA (Japan Aerospace Exploration Agency) — is seen driving across the lunar terrain. The pressurized rover will serve as a mobile habitat and laboratory for the astronauts to live and work for extended periods of time on the Moon.
      Logo
      Credit: NASA The NASA “meatball” logo. The round red, white, and blue insignia was designed by employee James Modarelli in 1959, NASA’s second year. The design incorporates references to different aspects of NASA’s missions.
      Credit: NASA The NASA meatball logo (left) and Artemis logo side by side.
      Moon Phases
      Credit: NASA The different phases of the Moon, shown in variations of shadowing, extend across this virtual background.
      Orion
      Credit: NASA On flight day 5 during Artemis I, the Orion spacecraft took a selfie while approaching the Moon ahead of the outbound powered flyby — a burn of Orion’s main engine that placed the spacecraft into lunar orbit. During this maneuver, Orion came within 81 miles of the lunar surface.
      Credit: NASA On flight day 13 during Artemis I, Orion reached its maximum distance from Earth at 268,563 miles away from our home planet, traveling farther than any other spacecraft built for humans.
      Credit: NASA This first high-resolution image, taken on the first day of the Artemis I mission, was captured by a camera on the tip of one of Orion’s solar arrays. The spacecraft was 57,000 miles from home and distancing itself from planet Earth as it approached the Moon and distant retrograde orbit.
      Silhouettes
      Credit: NASA In this virtual background, various scenes from Earth, Moon, and Mars are depicted within the silhouette outlines of three suited astronauts, artistically representing the interconnected nature of human space exploration from low Earth orbit to the Moon and, one day, human missions to Mars.
      SLS (Space Launch System)
      Credit: Joel Kowsky In this sunrise photo at NASA’s Kennedy Space Center in Florida, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B as preparations continued for the Artemis I launch.
      Credit: NASA/Joel Kowsky In this close-up image, NASA’s SLS rocket with the Orion spacecraft aboard is seen atop the mobile launcher at Launch Pad 39B on Nov. 12, 2022, at NASA’s Kennedy Space Center in Florida.
      Credit: NASA/Joel Kowsky NASA’s SLS rocket with the Orion spacecraft aboard is seen at sunrise atop the mobile launcher at Launch Pad 39B on Nov. 7, 2022, at NASA’s Kennedy Space Center in Florida.
      Earth, Moon, and Mars
      Credit: NASA From left, an artist’s concept of the Moon, Earth, and Mars sharing space. NASA’s long-term goal is to send humans to Mars, and we will use what we learn at the Moon to help us get there. This is the agency’s Moon to Mars exploration approach.  
      Credit: NASA In this artist’s concept, the upper portion of a blended sphere represents the Earth, Moon, and Mars.
      Credit: NASA An artist’s concept showing, from left, the Earth, Moon, and Mars in sequence. Mars remains our horizon goal for human exploration because it is a rich destination for scientific discovery and a driver of technologies that will enable humans to travel and explore far from Earth. 
      About the Author
      Catherine E. Williams

      Share
      Details
      Last Updated Dec 02, 2024 Related Terms
      Humans in Space Artemis Artemis 1 Artemis 2 Artemis 3 Artemis 4 Artemis 5 Exploration Systems Development Mission Directorate Explore More
      6 min read NASA’s Commercial Partners Make Progress on Low Earth Orbit Projects
      Article 7 days ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
      Article 1 week ago 8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: BepiColombo's fifth Mercury flyby View the full article
    • By Amazing Space
      What They Didn't Teach You About Mercury - The Planets of the Solar System
  • Check out these Videos

×
×
  • Create New...