Jump to content

Recommended Posts

Posted
Case 1: Strange gray object reflecting light of the sun floating through the sky. 

Witness: At first I thought it was the sun behind the clouds, but then I realized it was a gray object best described as the Millennium Falcon that moved through the sky over Gurnee, Illinois. 

ufo%2Bsky%2Bphenomenon%2Borbs.jpg

Case 2. Spheres interact, cross paths. 

Witness: Thought it was a weather balloon, but it did not move, then another sphere appeared below crossing paths with the first sphere, until they flew away over Lubbock, Texas. 
source: www.mufon.com

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This article is for students grades 5-8.
      The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.
      What is the Sun, and what is it made of?
      The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.
      The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.
      The Sun is a yellow dwarf star with a complex series of layers and features.NASA What is the solar cycle?
      The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”
      During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.
      The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.  
      The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).NASA Wait. The Sun’s magnetic poles can flip??
      Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.
      Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.NASA What is space weather?
      Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.
      Let’s explore these phenomena and how they affect our planet.
      Periods of increased solar activity can cause noticeable effects on Earth and in space.NASA What is solar wind?
      Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.
      Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.NASA What are solar storms, solar flares, and coronal mass ejections?
      The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.
      Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.
      The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.NASA How do these phenomena affect Earth?
      When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.
      When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.NASA Learn more about the Sun
      NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.
      Visit these resources for more details about the Sun:
      https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/all-about-the-sun/en/ https://science.nasa.gov/exoplanets/stars/ Explore More For Students Grades 5-8 View the full article
    • By NASA
      4 Min Read Celebrating 20 Years: Night Sky Network
      2023 Partial Solar Eclipse Viewing at Camino Real Marketplace with the View the Santa Barbara Astronomical Unit. Credits:
      Photo by Chuck McPartlin by Vivan White & Kat Troche of the Astronomical Society of the Pacific
      NASA’s Night Sky Network is one of the most successful and longstanding grassroots initiatives for public engagement in astronomy education. Started in 2004 with the PlanetQuest program out of the Jet Propulsion Laboratory and currently supported by NASA’s Science Activation, the Night Sky Network (NSN) plays a critical role in fostering science literacy through astronomy. By connecting NASA science and missions to support amateur astronomy clubs, NSN leverages the expertise and enthusiasm of club members, who bring this knowledge to schools, museums, observatories, and other organizations, bridging the gap between NASA science and the public. Now in its 20th year, NSN supports over 400 astronomy clubs dedicated to bringing the wonder of the night sky to their communities across the US, connecting with 7.4 million people across the United States and its territories since its inception.
      International Observe the Moon Night, September 2024 Credit: Oklahoma City Astronomy Club Humble Beginnings
      It all started with an idea – astronomy clubs already do great outreach, and club members know a lot of astronomy (shown definitively by founder Marni Berendsen’s research), and they love to talk with the public – how could NASA support these astronomy clubs in sharing current research and ideas using informal activities designed for use in the places that amateur astronomers do outreach.  Thanks to funding through NASA JPL’s PlanetQuest public engagement program, the Night Sky Network was born in 2004, with more than 100 clubs joining the first year.
      Raynham Public Observing Night, February 2004 Credit: Astronomical Society of Southern New England/Mark Gibson As quoted from the first NSN news article, “NASA is very excited to be working closely with the amateur astronomy community,” said Michael Greene, current Director for Communications and Education and former head of public engagement for JPL’s Navigator Program and PlanetQuest initiatives, “Amateurs want more people to look at the sky and understand astronomy, and so do we. Connecting what we do with our missions to the sense of wonder that comes when you look up at the stars and the planets is one of our long-term objectives. We have a strong commitment to inspiring the next generation of explorers. Lending support to the energy that the amateur astronomy community brings to students and the public will allow NASA to reach many more people.”
      Taking off like a rocket, Night Sky Network had over 100 clubs registered on their website within the first year.
      The Toolkits
      Outreach Toolkits were developed to assist clubs with their endeavors. These kits included educational materials, hands-on activities, and guides to explaining topics in an accessible way. So far, 13 toolkits have been created with topics ranging from the scale of the universe to how telescopes work. To qualify for these free Toolkits, clubs must be active in their communities, hosting two outreach events every three months or five outreach events within a calendar year. Supplemental toolkits were also created based on special events, such as the solar eclipses and the 50th anniversary of Apollo’s Moon landing. A new toolkit is in development to teach audiences about solar science, and NSN is on track to support clubs well into the future.
      Rye Science Day, October 2014 Credit: Southern Colorado Astronomical Society/Malissa Pacheco NSN also hosts archived video trainings on these toolkits and other topics via its YouTube channel and a monthly webinar series with scientists from various institutions worldwide. Lastly, a monthly segment called Night Sky Notes is produced for clubs to share with their audiences via newsletters and mailing lists.
      Sharing the Universe
      In 2007, a National Science Foundation grant provided funding for further research into astronomy club needs. From that came three resources for clubs – the Growing Your Astronomy Club and Getting Started with Outreach video series, as well as an updated website with a national calendar and club and event coordination. Now you can find hundreds of events each month across the country, including virtual events that you can join from anywhere.
      Night Sky Network: Current and Future
      Map of Night Sky Network clubs within the United States, as of November 2024 Credit: Night Sky Network/Google Maps View the full article
    • By NASA
      NASA Science Live: Parker Solar Probe Nears Historic Close Encounter with the Sun
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      On Dec. 10, 1974, NASA launched Helios 1, the first of two spacecraft to make close observations of the Sun. In one of the largest international efforts at the time, the Federal Republic of Germany, also known as West Germany, provided the spacecraft, NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had overall responsibility for U.S. participation, and NASA’s Lewis, now Glenn, Research Center in Cleveland provided the launch vehicle. Equipped with 10 instruments, Helios 1 made its first close approach to the Sun on March 15, 1975, passing closer and traveling faster than any previous spacecraft. Helios 2, launched in 1976, passed even closer. Both spacecraft  far exceeded their 18-month expected lifetime, returning unprecedented data from their unique vantage points. 

      The fully assembled Helios 1 spacecraft prepared for launch.Credit: NASA The West German company Messerchmitt-Bölkow-Blohm built the two Helios probes, the first non-Soviet and non-American spacecraft placed in heliocentric orbit, for the West German space agency DFVLR, today’s DLR. Each 815-pound Helios probe carried 10 U.S. and West German instruments, weighing a total of 158 pounds, to study the Sun and its environment. The instruments included high-energy particle detectors to measure the solar wind, magnetometers to study the Sun’s magnetic field and variations in electric and magnetic waves, and micrometeoroid detectors. Once activated and checked out, operators in the German control center near Munich controlled the spacecraft and collected the raw data. To evenly distribute the solar radiation the spacecraft spun on its axis once every second, and optical mirrors on its surface reflected the majority of the heat. 

      Workers encapsulate a Helios solar probe into its payload fairing. Credit: NASA
      Launch of Helios 1 took place at 2:11 a.m. EST Dec. 10, 1974, from Launch Complex 41 at Cape Canaveral Air Force, now Space Force, Station, on a Titan IIIE-Centaur rocket. This marked the first successful flight of this rocket, at the time the most powerful in the world, following the failure of the Centaur upper stage during the rocket’s inaugural launch on Feb. 11, 1974. The successful launch of Helios 1 provided confidence in the Titan IIIE-Centaur, needed to launch the Viking orbiters and landers to Mars in 1976 and the Mariner Jupiter-Saturn, later renamed Voyager, spacecraft in 1977 to begin their journeys through the outer solar system. The Centaur upper stage placed Helios 1 into a solar orbit with a period of 190 days, with its perihelion, or closest point to the Sun, well inside the orbit of Mercury. Engineers activated the spacecraft’s 10 instruments within a few days of launch, with the vehicle declared fully operational on Jan. 16, 1975. On March 15, Helios 1 reached its closest distance to the Sun of 28.9 million miles, closer than any other previous spacecraft – Mariner 10 held the previous record during its three Mercury encounters. Helios 1 also set a spacecraft speed record, traveling at 148,000 miles per hour at perihelion. Parts of the spacecraft reached a temperature of 261 degrees Fahrenheit, but the instruments continued to operate without problems. During its second perihelion on Sept. 21, temperatures reached 270 degrees, affecting the operation of some instruments. Helios 1 continued to operate and return useful data until both its primary and backup receivers failed and its high-gain antenna no longer pointed at Earth. Ground controllers deactivated the spacecraft on Feb. 18, 1985, with the last contact made on Feb. 10, 1986. 

      Helios 1 sits atop its Titan IIIE-Centaur rocket at Launch Complex 41 at Cape Canaveral Air Force, now Space Force, Station in Florida.Credit: NASA
      Helios 2 launched on Jan. 15, 1976, and followed a path similar to its predecessor’s but one that took it even closer to the Sun. On April 17, it approached to within 27 million miles of Sun, traveling at a new record of 150,000 miles per hour. At that distance, the spacecraft experienced 10% more solar heat than its predecessor. Helios 2’s downlink transmitter failed on March 3, 1980, resulting in no further useable data from the spacecraft. Controllers shut it down on Jan. 7, 1981. Scientists correlated data from the Helios instruments with similar data gathered by other spacecraft, such as the Interplanetary Monitoring Platform Explorers 47 and 50 in Earth orbit, the Pioneer solar orbiters, and Pioneer 10 and 11 in the outer solar system. In addition to their solar observations, Helios 1 and 2 studied the dust and ion tails of the comets C/1975V1 West, C/1978H1 Meier, and C/1979Y1 Bradfield. The information from the Helios probes greatly increased our knowledge of the Sun and its environment, and also raised more questions left for later spacecraft from unique vantage points to try to answer. 
      llustration of a Helios probe in flight, with all its booms deployed. Credit: NASA The joint ESA/NASA Ulysses mission studied the Sun from vantage points above its poles. After launch from space shuttle Discovery during STS-41 on Oct. 6, 1990, Ulysses used Jupiter’s gravity to swing it out of the ecliptic plane and fly first over the Sun’s south polar region from June to November 1994, then over the north polar region from June and September 1995. Ulysses continued its unique studies during several more polar passes until June 30, 2009, nearly 19 years after launch and more than four times its expected lifetime. NASA’s Parker Solar Probe, launched on Aug. 12, 2018, has made ever increasingly close passes to the Sun, including flying through its corona, breaking the distance record set by Helios 2. The Parker Solar Probe reached its first perihelion of 15 million miles on Nov. 5, 2018, with its closest approach of just 3.86 million miles of the Sun’s surface, just 4.5 percent of the Sun-Earth distance, planned for Dec. 24, 2024. The ESA Solar Orbiter launched on Feb. 10, 2020, and began science operations in November 2021. Its 10 instruments include cameras that have returned the highest resolution images of the Sun including its polar regions from as close as 26 million miles away. 
      Illustration of the Ulysses spacecraft over the Sun’s pole.Credit: NASA Illustration of the Parker Solar Probe during a close approach to the Sun.Credit: NASA The ESA Solar Orbiter observing the Sun.Credit: NASA About the Author
      John J. Uri

      Share
      Details
      Last Updated Dec 10, 2024 Related Terms
      Helios 1 Missions NASA History Explore More
      3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
      Article 1 hour ago 5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 1 hour ago 6 min read NASA Invites Social Creators for Launch of Two NASA Missions 
      Article 3 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      Three finalists from the Generative AI Challenge that will present their generative AI solutions and compete for first place at this year’s Space Power Conference.

      View the full article
  • Check out these Videos

×
×
  • Create New...