Jump to content

Hello Mercury


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:01:25 Watch the closest flyby of a planet ever, as the ESA/JAXA BepiColombo spacecraft sped past Mercury during its latest encounter on 4 September 2024.
      This flyby marked BepiColombo’s closest approach to Mercury yet, and for the first time, the spacecraft had a clear view of Mercury’s south pole.
      This timelapse is made up of 128 different images captured by all three of BepiColombo’s monitoring cameras, M-CAM 1, 2 and 3. We see the planet move in and out of the fields of view of M-CAM 2 and 3, before M-CAM 1 sees the planet receding into the distance at the end of the video.
      The first few images are taken in the days and weeks before the flyby. Mercury first appears in an image taken at 23:50 CEST (21:50 UTC) on 4 September, at a distance of 191 km. Closest approach was at 23:48 CEST at a distance of 165 km.
      The sequence ends around 24 hours later, on 5 September 2024, when BepiColombo was about 243 000 km from Mercury.
      During the flyby it was possible to identify various geological features that BepiColombo will study in more detail once in orbit around the planet. Four minutes after closest approach, a large ‘peak ring basin’ called Vivaldi came into view.
      This crater was named after the famous Italian composer Antonio Vivaldi (1678–1741). The flyover of Vivaldi crater was the inspiration for using Antonio Vivaldi’s ‘Four Seasons’ as the soundtrack for this timelapse.
      Peak ring basins are mysterious craters created by powerful asteroid or comet impacts, so-called because of the inner ring of peaks on an otherwise flattish floor.
      A couple of minutes later, another peak ring basin came into view: newly named Stoddart. The name was recently assigned following a request from the M-CAM team, who realised that this crater would be visible in these images and decided it would be worth naming considering its potential interest for scientists in the future.
      BepiColombo’s three monitoring cameras provided 1024 x 1024 pixel snapshots. Their main purpose is to monitor the spacecraft’s various booms and antennas, hence why we see parts of the spacecraft in the foreground. The photos that they capture of Mercury during the flybys are a bonus.
       
      The 4 September gravity assist flyby was the fourth at Mercury and the seventh of nine planetary flybys overall. During its eight-year cruise to the smallest and innermost planet of the Solar System, BepiColombo makes one flyby at Earth, two at Venus and six at Mercury, to help steer itself on course for entering orbit around Mercury in 2026.
      BepiColombo is an international collaboration between ESA and JAXA.
      BepiColombo’s best images yet highlight fourth Mercury flyby
      BepiColombo images in ESA’s Planetary Science Archive
      Processing notes: The BepiColombo monitoring cameras provide black-and-white, 1024 x 1024 pixel images. These raw images have been processed to remove electronic banding in the cameras. The M-CAM 1 images have been cropped to 995 x 995 pixels
      View the full article
    • By European Space Agency
      The ESA/JAXA BepiColombo mission has successfully completed its fourth of six gravity assist flybys at Mercury, capturing images of two special impact craters as it uses the little planet’s gravity to steer itself on course to enter orbit around Mercury in November 2026.
      The closest approach took place at 23:48 CEST (21:48 UTC) on 4 September 2024, with BepiColombo coming down to around 165 km above the planet’s surface. For the first time, the spacecraft had a clear view of Mercury’s south pole.
      View the full article
    • By European Space Agency
      Teams from across ESA and industry have worked continuously over the past four months to overcome a glitch that prevented BepiColombo’s thrusters from operating at full power. The ESA/JAXA mission is still on track, with a new trajectory that will take it just 165 km from Mercury’s surface on Wednesday.
      Taking BepiColombo closer to Mercury than it’s ever been before, this flyby will reduce the spacecraft’s speed and change its direction. It also gives us the opportunity to snap images and fine-tune science instrument operations at Mercury before the main mission begins. Closest approach is scheduled for 23:48 CEST (21:48 UTC) on 4 September.
      View the full article
    • By NASA
      6 min read
      Mercury’s Strange Hollows
      Enigmatic depressions on the surface have puzzled scientists since the 1970s
      NASA’s MESSENGER probe has discovered a surprise on Mercury: Something is digging “hollows” in the surface of the innermost planet. NASA’s MESSENGER spacecraft discovered strange hollows on the surface of Mercury. Images taken from orbit revealed thousands of mysterious depressions, pitted and uneven, in areas all across the planet, up to a half-mile (800 meters) across and 120 feet (37 meters) deep. This mosaic view of the Raditladi impact basin includes individual frames capturing areas about 12 miles (20 km) wide, which merged high-resolution monochrome images from MESSENGER’s Narrow Angle Camera with a lower-resolution enhanced-color image from its Wide Angle Camera.
      For decades, scientists have been puzzling over strange hollows on Mercury’s surface, thousands of peculiar depressions at a variety of longitudes and latitudes, ranging in size from 60 feet to more than a half-mile across (18-800 meters), and up to 120 feet deep (37 meters). No one knows how they got there.
      And while none are as spooky as the Sleepy Hollow of Washington Irving’s legend, Mercury’s hollows are just as mysterious and, so far, seen nowhere else in the universe. 
      NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science “There’s essentially no atmosphere on Mercury,” said planetary geologist David Blewett, of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. “With no atmosphere, wind doesn’t blow and rain doesn’t fall, so the hollows weren’t carved by wind or water. Other forces must be at work.”
      Mercury, the smallest planet in the solar system and closest to the Sun, is battered by heat, radiation, and solar wind; its extreme temperatures range from 800°F (430°C) on the sunny side, to as low as -290°F (-180°C) on the night side. It’s slightly larger, and similar to our Moon – airless, rocky, and peppered with impact craters large and small – but Mercury has rarely been visited by spacecraft, and retains many of its secrets.
      Scientists got their first tantalizing glimpses of the hollows when the Mariner 10 probe flew past Mercury in the 1970s, and captured low-resolution shots of curious bright areas in some craters. 
      NASA returned to the small planet with the MESSENGER mission, which first flew past Mercury in 2008, then settled into orbit in 2011.
      That spacecraft circled the planet more than 4,000 times in four years, collecting hundreds of thousands of images and other data, and giving researchers new insights into this little-explored world. Mariner had cataloged less than half the planet’s surface during its brief visits 40 years earlier.
      A view of hollows on the crater named for author Edgar Allan Poe on Mercury, “This sinfully scintillant planet.” In this representation, Poe’s raven-colored rim stands out from the tan volcanic plains that surround it. Tiny hollows speckle the dark rim like blue-white stars in the blackness of night. The image was one of hundreds of high-resolution targeted color observations by MESSENGER’s Wide Angle Camera, using filters of red, green, and blue. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science “A Little Valley…Among High Hills”
      MESSENGER (the Mercury Surface, Space Environment, Geochemistry and Ranging mission) finally provided a sharper view of the enigmatic tracts. To differentiate them from other surface features, researchers dubbed them “hollows” (akin to Washington Irving’s description of the terrain in “The Legend of Sleepy Hollow” – “a little valley or rather lap of land among high hills.”)
      The probe sent back finely detailed, beautiful images of the hollows, looking in some color-enhanced mosaics like sheets of copper corroded with blue-green patina. In others – such as shots of Sander crater in Mercury’s vast Caloris basin – the strange landforms, etched and ragged, glow bright blue amid the surrounding crater walls and mounds. And yet the images and other data, from MESSENGER’s X-Ray Spectrometer, Laser Altimeter, and other instruments, gave only hints and no definitive answers about the hollows.
      This enhanced-color image from the MESSENGER mission shows (from left to right) the craters Munch (38 miles, or 61 km, wide), Sander (32 miles, or 52 km), and Poe (50 miles, 81 km), which lie in the northwest portion of Mercury’s Caloris basin. The hollows are the bright blue areas covering the floor of Sander and dotting the rims of Munch and Poe. The hollows are highly reflective and naturally appear bluish; in images like this, the spacecraft’s Wide Angle Camera used its 11 color filters to exaggerate the color spectrum, to highlight the variation among surface materials. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution for Science ”When we got high-resolution views back of Sander, the floor of the crater just looked amazing,” said Carolyn Ernst of Johns Hopkins APL, a deputy instrument scientist on the MESSENGER mission. “It had all these crazy-shaped, irregular depressions, and it had this bright material outside of it. And to this day, we don’t fully know what causes them.”
      Researchers observed that the hollows are among the youngest and brightest features on the planet, especially compared to the impact craters where most reside, which date back as far as 4 billion years. The hollows, on the other hand, are relatively shiny and new – about 100,000 years old, on average – and may still be evolving today.

      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      MESSENGER mission scientists Ralph McNutt and Carolyn M. Ernst, both with Johns Hopkins APL, discuss what they’ve learned about Mercury’s hollows, and how much more needs to be figured out. Clues and Theories
      “We’ve been thinking of Mercury as a relic – a place that’s really not changing much anymore, except by impact cratering,” Blewett said. “But the hollows appear to be younger than the craters in which they are found, and that means Mercury’s surface is still evolving in a surprising way.”
      One possible clue to their formation is that many of the hollows are associated with central mounds or mountains inside Mercury’s impact craters. These so-called “peak rings” are thought to be made of material forced up from the depths by an impact that formed the crater. Ernst suggested a large object slamming into the planet, with the meteorite forming a new crater and tossing material from deep underground onto Mercury’s surface.
      The newly-excavated material could be unstable, finding itself suddenly exposed at the surface. Because Mercury is so close to the Sun, it’s battered by fierce heat and extreme space weather – factors that might play a role in forming hollows, added Blewett, a member of the science team for MESSENGER.
      ”Certain minerals, for example those that contain sulfur and other volatiles, would be easily vaporized by the onslaught of heat, solar wind, and micrometeoroids that Mercury experiences on a daily basis,” he said. “Perhaps sulfur is vaporizing, leaving just the other minerals, and therefore weakening the rock and making it spongier. Then the rock would crumble and erode more readily, forming these depressions.”
      Looking Ahead
      NASA’s Mars Reconnaissance Orbiter spotted similar depressions in the carbon dioxide ice at Mars’ south pole, giving that surface a “swiss cheese” appearance. But on Mercury the depressions are found in rock and often have bright interiors and halos.
      “We’ve never seen anything quite like this on a rocky surface,” Blewett said.
      Other theories include the idea that darker areas on Mercury’s surface are graphite deposits that, when pummeled and destroyed by solar wind, collapse and leave behind pitted, hollowed areas of only the much brighter, blue-tinged materials.
      We’ve never seen anything quite like this on a rocky surface.
      David Blewett
      Johns Hopkins University Applied Physics Laboratory MESSENGER mission participating scientist
      MESSENGER finally ran out of fuel and crashed into Mercury in April 2015, but researchers are still sifting through the data it collected. Scientists are also eagerly anticipating the arrival of BepiColombo to Mercury in 2025 and what secrets the mission will reveal. A joint European-Japanese venture, with two orbiters riding together, the craft made their first flyby of Mercury in October 2021 – only the third mission ever to visit the planet. 
      In 1820, Washington Irving wrote of Sleepy Hollow being a place of “strange sights, …haunted spots, and twilight superstitions; stars shoot and meteors glare oftener across the valley than in any other part of the country.”
      Likewise, Mercury has its own “ghosts” – craters in a previous life, later shrouded by lava – and has seen shooting stars and meteors peppering every part of its surface for billions of years. The craters they leave are named for artists and authors, including Nathaniel Hawthorne, Herman Melville, and Edgar Allan Poe, whose namesake crater contains hollows. Maybe one day Irving, their mentor and contemporary, will join their company. By then the true nature of Mercury’s strange hollows may be unmasked.
      A Ghost Story About the Author
      agreicius

      Share








      Details
      Last Updated Oct 17, 2023 Related Terms
      The Solar System Explore More
      3 min read Trick or Treat: Sidewalk Astronomy!
      Find events in your area and see what neighboring clubs are up to by checking…


      Article


      1 day ago
      2 min read NASA’s Lucy Spacecraft Continues Approach to Asteroid Dinkinesh


      Article


      5 days ago
      3 min read Five Tips for Photographing the Annular Solar Eclipse on Oct. 14


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Watch Mercury appear from the shadows as the ESA/JAXA BepiColombo spacecraft sped by the planet’s night side during its 19 June 2023 close flyby, and enjoy a special flyover of geologically rich terrain, along with a bonus 3D scene.
      View the full article
  • Check out these Videos

×
×
  • Create New...