Jump to content

NASA Invites Media to Discuss Future of NASA


Recommended Posts

  • Publishers
Posted

rssImage-8c61b7681eef5106a0df072eb8f6520f.jpeg

NASA Administrator Bill Nelson and other senior agency leaders will host an employee town hall for all civil servant and contractor employees at noon EDT, Tuesday, Sept. 21, to provide updates about the agency’s human spaceflight programs, projects, and activities to the workforce.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Launch of Blue Origin’s New Shepard suborbital rocket system on Feb. 4, 2025. During the flight test, the capsule at the top detached from the booster and spun at approximately 11 rpm to simulate lunar gravity for the NASA-supported payloads inside.Blue Origin The old saying — “Practice makes perfect!” — applies to the Moon too. On Tuesday, NASA gave 17 technologies, instruments, and experiments the chance to practice being on the Moon… without actually going there. Instead, it was a flight test aboard a vehicle adapted to simulate lunar gravity for approximately two minutes.
      The test began on February 4, 2025, with the 10:00 a.m. CST launch of Blue Origin’s New Shepard reusable suborbital rocket system in West Texas. With support from NASA’s Flight Opportunities program, the company, headquartered in Kent, Washington, enhanced the flight capabilities of its New Shepard capsule to replicate the Moon’s gravity — which is about one-sixth of Earth’s — during suborbital flight.
      “Commercial companies are critical to helping NASA prepare for missions to the Moon and beyond,” said Danielle McCulloch, program executive of the agency’s Flight Opportunities program. “The more similar a test environment is to a mission’s operating environment, the better. So, we provided substantial support to this flight test to expand the available vehicle capabilities, helping ensure technologies are ready for lunar exploration.”
      NASA’s Flight Opportunities program not only secured “seats” for the technologies aboard this flight — for 16 payloads inside the capsule plus one mounted externally — but also contributed to New Shepard’s upgrades to provide the environment needed to advance their readiness for the Moon and other space exploration missions.
      “An extended period of simulated lunar gravity is an important test regime for NASA,” said Greg Peters, program manager for Flight Opportunities. “It’s crucial to reducing risk for innovations that might one day go to the lunar surface.”
      One example is the LUCI (Lunar-g Combustion Investigation) payload, which seeks to understand material flammability on the Moon compared to Earth. This is an important component of astronaut safety in habitats on the Moon and could inform the design of potential combustion devices there. With support from the Moon to Mars Program Office within the Exploration Systems Development Mission Directorate, researchers at NASA’s Glenn Research Center in Cleveland, together with Voyager Technologies, designed LUCI to measure flame propagation directly during the Blue Origin flight.
      The rest of the NASA-supported payloads on this Blue Origin flight included seven from NASA’s Game Changing Development program that seek to mitigate the impact of lunar dust and to perform construction and excavation on the lunar surface. Three other NASA payloads tested instruments to detect subsurface water on the Moon as well as to study flow physics and phase changes in lunar gravity. Rounding out the manifest were payloads from Draper, Honeybee Robotics, Purdue University, and the University of California in Santa Barbara.
      Flight Opportunities is part of the agency’s Space Technology Mission Directorate and is managed at NASA’s Armstrong Flight Research Center.
      By Nancy Pekar, NASA’s Flight Opportunities program
      Keep Exploring Discover More …
      Space Technology Mission Directorate
      Armstrong Flight Research Center
      Flight Opportunities
      Game Changing Development
      Share
      Details
      Last Updated Feb 04, 2025 EditorLoura HallContactNancy J. Pekarnancy.j.pekar@nasa.gov Related Terms
      Ames Research Center Armstrong Flight Research Center Artemis Flight Opportunities Program Game Changing Development Program Space Technology Mission Directorate View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jeremy Frank, left, and Caleb Adams, right, discuss software developed by NASA’s Distributed Spacecraft Autonomy project. The software runs on spacecraft computers, currently housed on a test rack at NASA’s Ames Research Center in California’s Silicon Valley, and depicts a spacecraft swarm virtually flying in lunar orbit to provide autonomous position navigation and timing services at the Moon. NASA/Brandon Torres Navarrete Talk amongst yourselves, get on the same page, and work together to get the job done! This “pep talk” roughly describes how new NASA technology works within satellite swarms. This technology, called Distributed Spacecraft Autonomy (DSA), allows individual spacecraft to make independent decisions while collaborating with each other to achieve common goals – all without human input. 
      NASA researchers have achieved multiple firsts in tests of such swarm technology as part of the agency’s DSA project. Managed at NASA’s Ames Research Center in California’s Silicon Valley, the DSA project develops software tools critical for future autonomous, distributed, and intelligent swarms that will need to interact with each other to achieve complex mission objectives. 
      “The Distributed Spacecraft Autonomy technology is very unique,” said Caleb Adams, DSA project manager at NASA Ames. “The software provides the satellite swarm with the science objective and the ‘smarts’ to get it done.”  
      What Are Distributed Space Missions? 
      Distributed space missions rely on interactions between multiple spacecraft to achieve mission goals. Such missions can deliver better data to researchers and ensure continuous availability of critical spacecraft systems.  
      Typically, spacecraft in swarms are individually commanded and controlled by mission operators on the ground. As the number of spacecraft and the complexity of their tasks increase to meet new constellation mission designs, “hands-on” management of individual spacecraft becomes unfeasible.  
      Distributing autonomy across a group of interacting spacecraft allows for all spacecraft in a swarm to make decisions and is resistant to individual spacecraft failures. 
      The DSA team advanced swarm technology through two main efforts: the development of software for small spacecraft that was demonstrated in space during NASA’s Starling mission, which involved four CubeSat satellites operating as a swarm to test autonomous collaboration and operation with minimal human operation, and a scalability study of a simulated spacecraft swarm in a virtual lunar orbit. 
      Experimenting With DSA in Low Earth Orbit
      The team gave Starling a challenging job: a fast-paced study of Earth’s ionosphere – where Earth’s atmosphere meets space – to show the swarm’s ability to collaborate and optimize science observations. The swarm decided what science to do on their own with no pre-programmed science observations from ground operators.  
      “We did not tell the spacecraft how to do their science,” said Adams. “The DSA team figured out what science Starling did only after the experiment was completed. That has never been done before and it’s very exciting!”  
      The accomplishments of DSA onboard Starling include the first fully distributed autonomous operation of multiple spacecraft, the first use of space-to-space communications to autonomously share status information between multiple spacecraft, the first demonstration of fully distributed reactive operations onboard multiple spacecraft, the first use of a general-purpose automated reasoning system onboard a spacecraft, and the first use of fully distributed automated planning onboard multiple spacecraft. 
      During the demonstration, which took place between August 2023 and May 2024, Starling’s swarm of spacecraft received GPS signals that pass through the ionosphere and reveal interesting – often fleeting – features for the swarm to focus on. Because the spacecraft constantly change position relative to each other, the GPS satellites, and the ionospheric environment, they needed to exchange information rapidly to stay on task.   
      Each Starling satellite analyzed and acted on its best results individually. When new information reached each spacecraft, new observation and action plans were analyzed, continuously enabling the swarm to adapt quickly to changing situations. 
      “Reaching the project goal of demonstrating the first fully autonomous distributed space mission was made possible by the DSA team’s development of distributed autonomy software that allowed the spacecraft to work together seamlessly,” Adams continued.
      Caleb Adams, Distributed Spacecraft Autonomy project manager, monitors testing alongside the test racks containing 100 spacecraft computers at NASA’s Ames Research Center in California’s Silicon Valley. The DSA project develops and demonstrates software to enhance multi-spacecraft mission adaptability, efficiently allocate tasks between spacecraft using ad-hoc networking, and enable human-swarm commanding of distributed space missions. NASA/Brandon Torres Navarrete Scaling Up Swarms in Virtual Lunar Orbit  
      The DSA ground-based scalability study was a simulation that placed virtual small spacecraft and rack-mounted small spacecraft flight computers in virtual lunar orbit. This simulation was designed to test the swarm’s ability to provide position, navigation, and timing services at the Moon. Similar to what the GPS system does on Earth, this technology could equip missions to the Moon with affordable navigation capabilities, and could one day help pinpoint the location of objects or astronauts on the lunar surface.   
      The DSA lunar Position, Navigation, and Timing study demonstrated scalability of the swarm in a simulated environment. Over a two-year period, the team ran close to one hundred tests of more complex coordination between multiple spacecraft computers in both low- and high-altitude lunar orbit and showed that a swarm of up to 60 spacecraft is feasible.  
      The team is further developing DSA’s capabilities to allow mission operators to interact with even larger swarms – hundreds of spacecraft – as a single entity. 
      Distributed Spacecraft Autonomy’s accomplishments mark a significant milestone in advancing autonomous distributed space systems that will make new types of science and exploration possible. 
      NASA Ames leads the Distributed Spacecraft Autonomy and Starling projects. NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate provides funding for the DSA experiment. NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds and manages the Starling mission and the DSA project. 
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Ames Research Center CubeSats Game Changing Development Program Small Spacecraft Technology Program Space Technology Mission Directorate Explore More
      2 min read NASA Awards Contract for Airborne Science Flight Services Support
      Article 23 hours ago 4 min read NASA Flight Tests Wildland Fire Tech Ahead of Demo
      Article 4 days ago 4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Space Technology Mission Directorate
      STMD Small Spacecraft Technology
      Starling
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This version of a mosaic captured by the star tracker cameras aboard NASA’s Europa Clipper on Dec. 4, 2024, features the names of stars within view of the cameras. NASA/JPL-Caltech This mosaic of a star field was made from three images captured Dec. 4, 2024, by star tracker cameras aboard NASA’s Europa Clipper spacecraft. Showing part of the constel-lation Corvus, it’s the first imagery of space the orbiter has captured since its launch on Oct. 14, 2024.NASA/JPL-Caltech The spacecraft’s star trackers help engineers orient the orbiter throughout its long journey to Jupiter’s icy moon Europa.
      Three months after its launch from NASA’s Kennedy Space Center in Florida, the agency’s Europa Clipper has another 1.6 billion miles (2.6 billion kilometers) to go before it reaches Jupiter’s orbit in 2030 to take close-up images of the icy moon Europa with science cameras.
      Meanwhile, a set of cameras serving a different purpose is snapping photos in the space between Earth and Jupiter. Called star trackers, the two imagers look for stars and use them like a compass to help mission controllers know the exact orientation of the spacecraft — information critical for pointing telecommunications antennas toward Earth and sending data back and forth smoothly.
      In early December, the pair of star trackers (formally known as the stellar reference units) captured and transmitted Europa Clipper’s first imagery of space. The picture, composed of three shots, shows tiny pinpricks of light from stars 150 to 300 light-years away. The starfield represents only about 0.1% of the full sky around the spacecraft, but by mapping the stars in just that small slice of sky, the orbiter is able to determine where it is pointed and orient itself correctly.
      The starfield includes the four brightest stars — Gienah, Algorab, Kraz, and Alchiba — of the constellation Corvus, which is Latin for “crow,” a bird in Greek mythology that was associated with Apollo.
      Engineers on NASA’s Europa Clipper mission work with the spacecraft’s star trackers in a clean room at the agency’s Jet Propulsion Laboratory in 2022. Used for orienting the spacecraft, the star trackers are seen here with red covers to protect their lenses.NASA/JPL-Caltech Hardware Checkout
      Besides being interesting to stargazers, the photos signal the successful checkout of the star trackers. The spacecraft checkout phase has been going on since Europa Clipper launched on a SpaceX Falcon Heavy rocket on Oct. 14, 2024.
      “The star trackers are engineering hardware and are always taking images, which are processed on board,” said Joanie Noonan of NASA’s Jet Propulsion Laboratory in Southern California, who leads the mission’s guidance, navigation and control operations. “We usually don’t downlink photos from the trackers, but we did in this case because it’s a really good way to make sure the hardware — including the cameras and their lenses — made it safely through launch.”
      Pointing the spacecraft correctly is not about navigation, which is a separate operation. But orientation using the star trackers is critical for telecommunications as well as for the science operations of the mission. Engineers need to know where the science instruments are pointed. That includes the sophisticated Europa Imaging System (EIS), which will collect images that will help scientists map and examine the moon’s mysterious fractures, ridges, and valleys. For at least the next three years, EIS has its protective covers closed.
      Europa Clipper carries nine science instruments, plus the telecommunications equipment that will be used for a gravity science investigation. During the mission’s 49 flybys of Europa, the suite will gather data that will tell scientists if the icy moon and its internal ocean have the conditions to harbor life.
      The spacecraft already is 53 million miles (85 million kilometers) from Earth, zipping along at 17 miles per second (27 kilometers per second) relative to the Sun, and soon will fly by Mars. On March 1, engineers will steer the craft in a loop around the Red Planet, using its gravity to gain speed.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper/
      View an interactive 3D model of NASA’s Europa Clipper News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2025-014
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Europa Clipper Europa Explore More
      7 min read NASA Kennedy Top 24 Stories of 2024
      Article 2 months ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
      Article 2 months ago 5 min read NASA Ocean World Explorers Have to Swim Before They Can Fly
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      An interesting fact about Johnson Space Center’s Anika Isaac, MS, LPC, LMFT, LCDC, CEAP, NCC, is that there are more letters following her name than there are in it.

      A licensed professional counselor, marriage and family therapist, and chemical dependency counselor with several other certifications, Isaac has been a fixture of Johnson’s Employee Assistance Program for the last 13 years. She provides confidential counseling and assessment, crisis response, referrals to community providers, and debriefing and support to Johnson’s workforce. Additionally, Isaac leads assertiveness skills training for employees, provides management consults, and presents on various mental health topics by request. She also coordinates the center’s Autism Support Group, which convenes monthly to offer networking, resource sharing, and support for caregivers of those with autism.

      Official portrait of Anika Isaac.NASA Isaac’s invaluable counsel earned her a Silver Snoopy Award in 2022. Presented by Johnson Director Vanessa Wyche and NASA astronaut Jessica Meir, the award recognized Isaac’s exceptional efforts to support NASA’s ability to execute the tasks necessary for safe human spaceflight. “I taught, modeled, and empowered thousands to address critical issues and topics in the workplace, directly impacting mission success and safety,” she said.

      Anika Isaac (center) receives a Silver Snoopy Award from Johnson Space Center Director Vanessa Wyche (left) and NASA astronaut Jessica Meir. NASA Isaac has also proudly participated in transparent, authentic conversations about personal and socially significant questions raised by the Johnson community, by leading panel discussions during center events and more. “Having those brave and bold conversations are necessary to foster a compassionate workplace culture that we emphasize through the Johnson Expected Behaviors,” she said.

      Isaac said her work experiences prior to joining NASA not only affected her personally but also shaped her professionally. “The most troublesome challenges have been dealing with colleagues whom I saw be divisive in their comments and manipulative in their actions,” she said. “I overcame those challenges with faith, time, and talking to mentors and my trusted support system for perspective and guidance.”

      Isaac’s career has also taught her to trust herself and give herself some grace. “In each moment I have everything I need to be successful and keep learning when I fall short of my expectations,” she said. She has come to appreciate the value of her unique experience and skillset, as well. “In an agency with so many experts in so many disciplines, in my respective discipline my expertise is as necessary and essential to the success of NASA’s mission,” she said. “I have also learned to stay persistent with my goals, since there are enough people to help me achieve them along the way.”

      Johnson’s Employee Assistance Program (EAP) received a Group Achievement Award for the team’s support of the Johnson community following Hurricane Harvey in 2017 and the Santa Fe High School shooting in 2018. From left: Vanessa Wyche, Anika Isaac, EAP Executive Director Jackie Reese, EAP Counselor Daisy Wei, and Mark Geyer, who was Johnson’s director at the time.NASA Isaac looks forward to a future of space exploration that combines the best of the commercial sector, international partnerships, and NASA’s strengths with incredible advances in artificial intelligence and other technologies to ensure crew safety while propelling humanity further into the cosmos. She also celebrates the different backgrounds and cultures of today’s astronaut corps. “We are seeing a level of diversity in the faces of space explorers that has never existed before in the history of the space program,” she said.

      Isaac encourages the Artemis Generation to learn and incorporate key aspects of NASA and space exploration history into their work while building their own culture and valuing their unique perspectives. “Trust yourself! Have you not usually recovered from setbacks? Those that came before you made similar mistakes,” she said. “Pay attention and learn from them. And build those crucial, reciprocal mentor and social relationships to enhance your ongoing personal and work journey.”

      View the full article
    • By NASA
      NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) sits outside a testing chamber after completing its thermal vacuum testing in the fall of 2024. Credit: NASA/JSC David DeHoyos To advance plans of securing a public/private partnership and land and operate NASA’s VIPER (Volatiles Investigating Polar Exploration Rover) mission on the Moon in collaboration with industry the agency announced Monday it is seeking U.S. proposals. As part of the agency’s Artemis campaign, instruments on VIPER will demonstrate U.S. industry’s ability to search for ice on the lunar surface and collect science data.
      The Announcement for Partnership Proposal contains proposal instructions and evaluation criteria for a new Lunar Volatiles Science Partnership. Responses are due Thursday, Feb. 20. After evaluating submissions, any selections by the agency will require respondents to submit a second, more detailed, proposal. NASA is expected to make a decision on the VIPER mission this summer.
      “Moving forward with a VIPER partnership offers NASA a unique opportunity to engage with the private sector,” said Nicky Fox, associate administrator in the Science Mission Directorate at NASA Headquarters in Washington. “Such a partnership provides the opportunity for NASA to collect VIPER science that could tell us more about water on the Moon, while advancing commercial lunar landing capabilities and resource prospecting possibilities.”
      This new announcement comes after NASA issued a Request for Information on Aug. 9, 2024, to seek interest from American companies and institutions in conducting a mission using the agency’s VIPER Moon rover after the program was canceled in July 2024.
      Any partnership would work under a Cooperative Research and Development Agreement. This type of partnership allows both NASA and an industry partner to contribute services, technology, and hardware to the collaboration.
      As part of an agreement, NASA would contribute the existing VIPER rover as-is. Potential partners would need to arrange for the integration and successful landing of the rover on the Moon, conduct a science/exploration campaign, and disseminate VIPER-generated science data. The partner may not disassemble the rover and use its instruments or parts separately from the VIPER mission. NASA’s selection approach will favor proposals that enable data from the mission’s science instruments to be shared openly with anyone who wishes to use it.
      “Being selected for the VIPER partnership would benefit any company interested in advancing their lunar landing and surface operations capabilities,” said Joel Kearns, deputy associate administrator for exploration in the Science Mission Directorate. “This solicitation seeks proposals that clearly describe what is needed to successfully land and operate the rover, and invites industry to propose their own complementary science goals and approaches. NASA is looking forward to partnering with U.S. industry to meet the challenges of performing volatiles science in the lunar environment.”
      The Moon is a cornerstone for solar system science and exoplanet studies. In addition to helping inform where ice exists on the Moon for potential future astronauts, understanding our nearest neighbor helps us understand how it has evolved and what processes shaped its surface. 
      To learn more about NASA’s lunar science, visit:
      https://www.nasa.gov/moon
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1100
      karen.fox@nasa.gov
      Share
      Details
      Last Updated Feb 03, 2025 Related Terms
      Missions VIPER (Volatiles Investigating Polar Exploration Rover) View the full article
  • Check out these Videos

×
×
  • Create New...