Members Can Post Anonymously On This Site
Combined tests start for Ariane 6 at Europe’s Spaceport
-
Similar Topics
-
By NASA
Media are invited to learn about a unique series of flight tests happening in Virginia in partnership between NASA and GE Aerospace that aim to help the aviation industry better understand contrails and their impact on the Earth’s climate. Contrails are the lines of clouds that can be created by high-flying aircraft, but they may have an unseen effect on the planet – trapping heat in the atmosphere.
The media event will occur from 9 a.m.-12 p.m. on Monday, Nov. 25 at NASA’s Langley Research Center in Hampton, Virginia. NASA Langley’s G-III aircraft and mobile laboratory, as well as GE Aerospace’s 747 Flying Test Bed (FTB) will be on site. NASA project researchers and GE Aerospace’s flight crew will be available to discuss the Contrail Optical Depth Experiment (CODEX), new test methods and technologies used, and the real-world impacts of understanding and managing contrails. Media interested in attending must contact Brittny McGraw at brittny.v.mcgraw@nasa.gov no later than 12 p.m. EST, Friday, Nov. 22.
Flights for CODEX are being conducted this week. NASA Langley’s G-III will follow GE Aerospace’s FTB in the sky and scan the aircraft wake with Light Detection and Ranging (LiDAR) technology. This will advance the use of LiDAR by NASA to generate three-dimensional imaging of contrails to better characterize how contrails form and how they behave over time.
For more information about NASA’s work in green aviation tech, visit:
https://www.nasa.gov/aeronautics/green-aero-tech
-end-
David Meade
Langley Research Center, Hampton, Virginia
757-751-2034 davidlee.t.meade@nasa.gov
View the full article
-
By NASA
Imagine designing technology that can survive on the Moon for up to a decade, providing a continuous energy supply. NASA selected three companies to develop such systems, aimed at providing a power source at the Moon’s South Pole for Artemis missions.
Three companies were awarded contracts in 2022 with plans to test their self-sustaining solar arrays at the Johnson Space Center’s Space Environment Simulation Laboratory (SESL) in Houston, specifically in Chamber A in building 32. The prototypes tested to date have undergone rigorous evaluations to ensure the technology can withstand the harsh lunar environment and deploy the solar array effectively on the lunar surface.
The Honeybee Robotics prototype during lunar VSAT (Vertical Solar Array Technology) testing inside Chamber A at NASA’s Johnson Space Center in Houston.NASA/David DeHoyos The Astrobotic Technology prototype during lunar VSAT testing inside Chamber A at Johnson Space Center. NASA/James Blair In the summer of 2024, both Honeybee Robotics, a Blue Origin company from Altadena, California and Astrobotic Technology from Pittsburgh, Pennsylvania put their solar array concepts to the test in Chamber A.
Each company has engineered a unique solution to design the arrays to withstand the harsh lunar environment and extreme temperature swings. The data collected in the SESL will support refinement of requirements and the designs for future technological advancements with the goal to deploy at least one of the systems near the Moon’s South Pole.
The contracts for this initiative are part of NASA’s VSAT (Vertical Solar Array Technology) project, aiming to support the agency’s long-term lunar surface operations. VSAT is under the Space Technology Mission Directorate Game Changing Development program and led by the Langley Research Center in Hampton, Virginia, in collaboration with Glenn Research Center in Cleveland.
“We foresee the Moon as a hub for manufacturing satellites and hardware, leveraging the energy required to launch from the lunar surface,” said Jim Burgess, VSAT lead systems engineer. “This vision could revolutionize space exploration and industry.”
Built in 1965, the SESL initially supported the Gemini and Apollo programs but was adapted to conduct testing for other missions like the Space Shuttle Program and Mars rovers, as well as validate the design of the James Webb Space Telescope. Today, it continues to evolve to support future Artemis exploration.
Johnson’s Front Door initiative aims to solve the challenges of space exploration by opening opportunities to the public and bringing together bold and innovative ideas to explore new destinations.
“The SESL is just one of the hundreds of unique capabilities that we have here at Johnson,” said Molly Bannon, Johnson’s Innovation and Strategy specialist. “The Front Door provides a clear understanding of all our capabilities and services, the ways in which our partners can access them, and how to contact us. We know that we can go further together with all our partners across the entire space ecosystem if we bring everyone together as the hub of human spaceflight.”
Chamber A remains as one of the largest thermal vacuum chambers of its kind, with the unique capability to provide extreme deep space temperature conditions down to as low as 20 Kelvin. This allows engineers to gather essential data on how technologies react to the Moon’s severe conditions, particularly during the frigid lunar night where the systems may need to survive for 96 hours in darkness.
“Testing these prototypes will help ensure more safe and reliable space mission technologies,” said Chuck Taylor, VSAT project manager. “The goal is to create a self-sustaining system that can support lunar exploration and beyond, making our presence on the Moon not just feasible but sustainable.”
The power generation systems must be self-aware to manage outages and ensure survival on the lunar surface. These systems will need to communicate with habitats and rovers and provide continuous power and recharging as needed. They must also deploy on a curved surface, extend 32 feet high to reach sunlight, and retract for possible relocation.
“Generating power on the Moon involves numerous lessons and constant learning,” said Taylor. “While this might seem like a technical challenge, it’s an exciting frontier that combines known technologies with innovative solutions to navigate lunar conditions and build a dynamic and robust energy network on the Moon.”
Watch the video below to explore the capabilities and scientific work enabled by the thermal testing conducted in Johnson’s Chamber A facility.
View the full article
-
By Space Force
The U.S. Space Force’s Space Systems Command awarded four agreements to Astranis, Axient, L3 Harris, and Sierra Space to produce design concepts for Lite Evolving Augmented Proliferation one of the Resilient Global Positioning System program.
View the full article
-
By NASA
As the hub of human spaceflight, NASA’s Johnson Space Center in Houston holds a variety of unique responsibilities and privileges. Those include being the home of NASA’s astronaut corps.
One of those astronauts – Nick Hague – is now preparing to launch to the International Space Station along with Roscosmos cosmonaut Aleksandr Gorbunov on the ninth rotational mission under NASA’s Commercial Crew Program. This will be the third launch and second mission to the space station for Hague, who was selected as a NASA astronaut in 2013 and has spent 203 days in space.
NASA’s SpaceX Crew-9 Commander Nick Hague smiles and gives two thumbs up during the crew equipment interface test at SpaceX’s Dragon refurbishing facility at Kennedy Space Center in Florida.SpaceX Hague was born and raised in Kansas but has crisscrossed the country for college and career. He earned degrees from the United States Air Force Academy in Colorado and the Massachusetts Institute of Technology in Cambridge, and he attended the U.S. Air Force Test Pilot School at Edwards Air Force Base in California. Hague’s military career has taken him to New Mexico, Colorado, Virginia, and Washington, D.C., and included a five-month deployment to Iraq. Hague transferred from the Air Force to the U.S. Space Force in 2020 after serving as the Space Force’s director of test and evaluation at the Pentagon.
No stranger to new places, Hague vividly recalls making his first trip to Johnson when he was interviewing to join NASA’s astronaut corps. “I had no idea what to expect, and it was a bit overwhelming. I knew everyone was watching me and judging me,” he said. “Luckily, even though I wasn’t selected then, I got another chance a few years later. It’s a pretty magical place.”
Hague completed his astronaut training in July 2015 as part of NASA’s 21st astronaut class. He was the first astronaut from that group to be assigned to a mission, which launched in October 2018 but was aborted shortly after takeoff. His next spaceflight occurred in 2019, when he joined three of his classmates – NASA astronauts Jessica Meir, Christina Koch, and Andrew Morgan – aboard the International Space Station for Expeditions 59 and 60.
NASA astronaut Nick Hague suits up for spacewalk training in the Neutral Buoyancy Laboratory. NASA/James Blair Hague has made many memories at Johnson, but one that stands out is his experience working onsite amid the 2013 government shutdown. “I’m active-duty military so I still came to work,” he explained. “I remember being onsite and the center being completely empty. Being able to ride around an empty campus on the free-range bikes – it was peaceful and surreal.” It was also a preview of what many Johnson employees experienced during the pandemic and how NASA maintains round-the-clock support for spaceflight operations regardless of extenuating circumstances.
Hague now looks ahead to another journey to low Earth orbit. NASA and SpaceX officials currently plan to launch the Crew-9 mission no earlier than Wednesday, Sept. 25. The crew will lift off from Launch Complex 40 from the Cape Canaveral Space Force Station in Florida aboard a SpaceX Falcon 9 rocket and Dragon spacecraft.
Roscosmos cosmonaut Aleksandr Gorbunov (left) and NASA astronaut Nick Hague during a visit to Kennedy Space Center for training. SpaceX Hague and Gorbonov will become members of the Expedition 72 crew aboard the station. They will join NASA astronauts Butch Wilmore, Suni Williams, and Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, and will spend about six months conducting scientific research in microgravity and completing a range of operational activities before returning home.
More details about the mission and crew can be found by following the Crew-9 blog, @commercial_crew on X, or commercial crew on Facebook. You can also follow @astrohague on X and Instagram.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.