Jump to content

Top Secret Anti-Gravity Spy Plane - TR3b Black Manta


USH

Recommended Posts

In the case of the TR-3B Black Manta, it means a craft that uses highly pressured mercury accelerated by nuclear energy, so that plasma is produced, which, in turn, creates a field of anti-gravity around the craft. It has an electromagnetic coil at the heart of it’s motive power system, the result of which is electromagnetic drive that interacts with the Higgs-Boson field at the quantum level. Heady stuff indeed! 

TR3b%2BBlack%2BManta.jpg

So, an anti-gravity aircraft doesn’t use conventional turbine or rocket engine technology, but instead a propulsion system that creates thrust by generating high-energy plasma. These aircraft are also referred to as ‘flux liners’. 

As with many divergent aviation technologies, anti-gravity technology dates back to the latter part and aftermath of World War II, and specifically the covert U.S. project known as Operation Paperclip. 

The objective of Operation Paperclip was for the U.S. to gain as much leverage against the Soviet Union in the military armaments technology race, which is why the project was packed to the rafters with German scientists who were avowed members of the Nazi Party. 

That means the U.S. has been investigating anti-gravity technology for nearly 70 years. 

It is the culmination of theories regarding gravitation, quantum gravity and general relativity, the latter as first put forward by Albert Einstein himself. 

Anti-gravity is of huge interest to the military and scientists alike, given that, for example, one could hypothetically reduce an aircraft’s mass by using electromagnetic propulsion, even down to zero. 

Little wonder that the likes of NASA, the U.S. Air Force and Lockheed Martin researchers have all invested in theoretical studies regarding the ability to alter inert mass. 

According to experts, the TR-3B Black Manta would use conventional thrusters located at the tips of the aircraft that would allow it to perform a dizzying number of rapid high-speed maneuvers, including perfect right-angle turns and hyper acceleration. And it could achieve this along all its three axes. 

Remember, the TR-3B was designed to be a subsonic stealth spy plane. 

For one thing, it’s a very silent aircraft, save for a slight humming sound. An interesting by-product of the plasma the TR-3B generates is that it significantly reduces the aircraft’s radar signature, thereby making it ideal for missions in which stealth is paramount. 

That means the TR-3B Black Manta could sneak into just about any air space of any country and not be detected by its air traffic control or air defence systems. 

This little black number has been associated with multiple reports of sightings of flying triangle aircraft over Antelope Valley, an area of desert in southern California much beloved by UFO watchers. 

It’s also this desert area of California that draws people interested in covert black project or ‘black ops aircraft projects, given its close proximity to several known military research and testing areas, including Edwards Air Force Base and USAF Plant 42, the latter which is a mere 60 miles or 97 kilometres from downtown Los Angeles. 

The TR-3B Black Manta would certainly be the type of black ops project typical of the U.S. Air Force and Navy. The U2 spy plane of the 1950s, the SR-71 jet of the 1980s, and the present-day F-117A stealth craft are just three examples of planes that the U.S. Air Force denied existed for years, all of which were first covertly developed at Nevada’s infamous Area 51 base. And don’t let’s forget that Area 51 itself was only finally acknowledged by the U.S. government when that most covert of agencies, the CIA, did so in June 2013, courtesy of a Freedom of Information Act (FOIA) request filed eight years earlier. 

But does it exist? 

There are of course the inevitable allegations that the TR-3B was built by the military using extraterrestrial reverse-engineered technology. 

Even Forbes magazine mused in 2021 that maybe, just maybe the patents issued to Salvatore Cezar Pais could be a cover for alien technology captured over the years by the U.S. military. 

So, what of the TR-3B Black Manta? How far back does it go, if at all? Does it have anything to do with the aforementioned 2018 patent issued to Pais and the U.S. Navy? Is it a plane, is it a bird, could it even be Superman? No, it’s just the United States Air Force messing with our heads again.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Microgravity had no immediate effect on a person’s ability to perceive the height of an object, indicating that astronauts can safely perform tasks that rely on accurate and precise height judgments soon after arrival in space.

      We use the height and width of objects around us to complete tasks such as reaching for objects and deciding whether we can fit through an opening. VECTION, an investigation from the Canadian Space Agency, examined the effect of microgravity on an astronaut’s visual perception and how that ability may adapt during flight or upon return to Earth. Researchers conclude there is no need for countermeasures but suggest that space travelers be made aware of late-emerging and potentially long-lasting changes in the ability to perceive object height.
      Canadian Space Agency astronaut David Saint-Jacques conducts a session for the VECTION experiment. NASA/Anne McClain Analysis of the genomes of five new species of bacteria found on the International Space Station identified specific adaptations to space, including the development of increased antibiotic resistance and a greater potential for causing diseases. The genes that facilitate these adaptations could serve as potential targets for drugs, helping to protect crew health on future missions.

      Microbial Tracking-2 monitored viruses, bacteria, and fungi on the space station to catalog and characterize any with the potential to cause disease. Understanding the mechanisms behind adaptations to space could advance development of ways to protect crew member health as well as spacecraft and equipment on future missions. Microbial adaptations also have potential applications in biotechnology, such as engineering more resilient organisms for use in space and extraterrestrial environments.
      A Microbial Tracking-2 sample collector on the International Space Station. NASA/Jack Fischer When NASA’s Airborne Lightning Observatory for Fly’s Eye and the space station’s ASIM instrument briefly passed over the same geographic area, the airborne instrument detected terrestrial gamma‐ray flashes (TGFs) that were not detected by ASIM. TGFs are short bursts of gamma‐rays produced by lightning in thunderclouds. This result suggests that a significant number of TGFs are too weak to be observed from space and that the percentage of lightning associated with these phenomena may be higher than previously thought.

      ASIM, an investigation from the European Space Agency, studies high-altitude lightning in thunderstorms and the role it plays in Earth’s atmosphere and climate. Results could help scientists develop better atmospheric models to guide weather and climate prediction and response. The airborne instrument took measurements at an altitude of about 12 miles and ASIM at approximately 260 miles above Earth’s surface.
      A view of ASIM mounted on the outside of the space station. NASAView the full article
    • By USH
      Last Monday, paraglider Alex Lang was flying high above the Great Pyramid of Giza when he noticed unexpected movement at its peak. To his surprise, it wasn't a person, but a dog perched at the top of the ancient monument. 
      Image credit: Alex Lang.
      Lang, who recorded the bizarre sighting, described the dog barking and chasing birds from the very summit of the pyramid. 
      The footage left people both fascinated and confused, wondering how the dog had managed to scale such an immense structure. Some even joked that it might be a manifestation of Anubis, god of funerary practices and care of the dead. However, the main concern was whether the dog could safely make its way back down. 
          
      Luckily, a few days later, the dog was captured on video making its way down the ancient landmark, appearing calm and unscathed, as if the climb had been no big deal.
      Image credit: abcnews.

      Link video dog making its way down.https://www.tiktok.com/@abcnews/video/7427042186371386654/View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      New findings using data from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) mission offer unprecedented insight into the shape and nature of a structure important to black holes called a corona.
      A corona is a shifting plasma region that is part of the flow of matter onto a black hole, about which scientists have only a theoretical understanding. The new results reveal the corona’s shape for the first time, and may aid scientists’ understanding of the corona’s role in feeding and sustaining black holes.
      This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light. In this depiction, the corona can be seen as a purple haze floating above the underlying accretion disk, and extending slightly inside of its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it. NASA/Caltech-IPAC/Robert Hurt Many black holes, so named because not even light can escape their titanic gravity, are surrounded by accretion disks, debris-cluttered whirlpools of gas. Some black holes also have relativistic jets – ultra-powerful outbursts of matter hurled into space at high speed by black holes that are actively eating material in their surroundings.
      Less well known, perhaps, is that snacking black holes, much like Earth’s Sun and other stars, also possess a superheated corona. While the Sun’s corona, which is the star’s outermost atmosphere, burns at roughly 1.8 million degrees Fahrenheit, the temperature of a black hole corona is estimated at billions of degrees.
      Astrophysicists previously identified coronae among stellar-mass black holes – those formed by a star’s collapse – and supermassive black holes such as the one at the heart of the Milky Way galaxy.
      “Scientists have long speculated on the makeup and geometry of the corona,” said Lynne Saade, a postdoctoral researcher at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and lead author of the new findings. “Is it a sphere above and below the black hole, or an atmosphere generated by the accretion disk, or perhaps plasma located at the base of the jets?”
      Enter IXPE, which specializes in X-ray polarization, the characteristic of light that helps map the shape and structure of even the most powerful energy sources, illuminating their inner workings even when the objects are too small, bright, or distant to see directly. Just as we can safely observe the Sun’s corona during a total solar eclipse, IXPE provides the means to clearly study the black hole’s accretion geometry, or the shape and structure of its accretion disk and related structures, including the corona.
      “X-ray polarization provides a new way to examine black hole accretion geometry,” Saade said. “If the accretion geometry of black holes is similar regardless of mass, we expect the same to be true of their polarization properties.”
      IXPE demonstrated that, among all black holes for which coronal properties could be directly measured via polarization, the corona was found to be extended in the same direction as the accretion disk – providing, for the first time, clues to the corona’s shape and clear evidence of its relationship to the accretion disk. The results rule out the possibility that the corona is shaped like a lamppost hovering over the disk.  
      The research team studied data from IXPE’s observations of 12 black holes, among them Cygnus X-1 and Cygnus X-3, stellar-mass binary black hole systems about 7,000 and 37,000 light-years from Earth, respectively, and LMC X-1 and LMC X-3, stellar-mass black holes in the Large Magellanic Cloud more than 165,000 light-years away. IXPE also observed a number of supermassive black holes, including the one at the center of the Circinus galaxy, 13 million light-years from Earth, and those in galaxies NGC 1068 and NGC 4151, 47 million light-years away and nearly 62 million light-years away, respectively.
      Stellar mass black holes typically have a mass roughly 10 to 30 times that of Earth’s Sun, whereas supermassive black holes may have a mass that is millions to tens of billions of times larger. Despite these vast differences in scale, IXPE data suggests both types of black holes create accretion disks of similar geometry.
      That’s surprising, said Marshall astrophysicist Philip Kaaret, principal investigator for the IXPE mission, because the way the two types are fed is completely different.
      “Stellar-mass black holes rip mass from their companion stars, whereas supermassive black holes devour everything around them,” he said. “Yet the accretion mechanism functions much the same way.”
      That’s an exciting prospect, Saade said, because it suggests that studies of stellar-mass black holes – typically much closer to Earth than their much more massive cousins – can help shed new light on properties of supermassive black holes as well.
      The team next hopes to make additional examinations of both types.
      Saade anticipates there’s much more to glean from X-ray studies of these behemoths. “IXPE has provided the first opportunity in a long time for X-ray astronomy to reveal the underlying processes of accretion and unlock new findings about black holes,” she said.
      The complete findings are available in the latest issue of The Astrophysical Journal.
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by Marshall. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
      Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Elizabeth Landau
      NASA Headquarters
      elizabeth.r.landau@nasa.gov
      202-358-0845
      Lane Figueroa
      NASA’s Marshall Space Flight Center
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Oct 17, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      IXPE (Imaging X-ray Polarimetry Explorer) Marshall Space Flight Center Explore More
      24 min read The Marshall Star for October 16, 2024
      Article 23 hours ago 8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the…
      Article 2 days ago 30 min read The Marshall Star for October 9, 2024
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Researchers verified that 3D micro-computed tomography scans can map the orientation of plant roots in space and used the method to demonstrate that carrots grown in actual and simulated microgravity both had random root orientation. These findings suggest that simulated microgravity offers a reliable and more affordable tool for studying plant adaptation to spaceflight.

      MULTI-TROP evaluated the role of gravity and other factors on plant growth. Plant roots grow downward in response to gravity on Earth, but in random directions in microgravity, which is a challenge for developing plant growth facilities for space. Results from this investigation could help address this challenge, advancing efforts to grow plants for food and other uses on future space missions as well as improving plant cultivation on Earth.
      Preflight image of the BIOKON facility used to grow carrots for MULTI-TROP. Kayser Italia For climate model simulations, researchers developed four parameters of electrical discharges from thunderclouds that produce visual emissions known as Blue LUminous Events or BLUEs. BLUEs are thought to affect regional atmospheric chemistry and climate. The parameters reported by this study could inform models that help test the global and regional effects of thunderstorm corona discharges, including how their geographic distribution and global occurrence rate will change as the atmosphere warms.

      ASIM, an investigation from ESA (European Space Agency), studies high-altitude lightning in thunderstorms and the role it plays in Earth’s atmosphere and climate. Scientists need to understand processes occurring in Earth’s upper atmosphere to determine how lightning is connected to Earth’s climate and weather so they can develop better atmospheric models to guide weather and climate predictions.
      Lightning in a thunderstorm off the coast of Africa as seen from the International Space Station. NASA/Matthew Dominick A technique to detect sounds generated by the inner ear could be used as a non-invasive tool for monitoring changes in fluid pressure in the head during spaceflight. Increased fluid pressure in the head that occurs in microgravity can cause visual impairment and may also affect the middle and inner ear. Insight into fluid pressure changes could help scientists develop ways to protect astronauts from these effects.

      The ESA and ASI investigation Acoustic Diagnostics monitored hearing function in astronauts on long-term missions using otoacoustic emissions (sounds generated by the inner ear in response to specific tones). Researchers compared these measurements before and during flight to indirectly detect changes in fluid pressure in the head. Different body position and fit of the ear probes affected results of the test and the authors note that these issues need to be addressed.
      NASA astronaut Drew Morgan participates in a hearing test for the Acoustic Diagnostics investigation. ESA (European Space Agency)/Luca ParmitanoView the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Rickey Shyne is responsible for leading a staff of approximately 1,100 engineers and scientists.Credit: NASA Dr. Rickey J. Shyne, director of Research and Engineering at NASA’s Glenn Research Center in Cleveland, has been named one of Crain’s Cleveland Business’ 2024 Notable Black Leaders.  
      Shyne is responsible for leading a staff of approximately 1,100 engineers and scientists, and managing research and development in propulsion, communications, power, and materials and structures for extreme environments in support of the agency’s missions. He is on the board of Southwest General Health Center and a former board member of Cleveland Engineering Society. 
      Crain’s Notable Black Leaders represent all industries and communities. From magnates to mentors, they are working to enrich their companies, communities and city. Nominees must serve in a senior leadership role at their company or organization; have at least five years of experience in their field; and demonstrate significant accomplishments within their industry, professional organizations, and civic and community groups. They must live and work in the Northeast Ohio area.  
      Shyne is featured in the Crain’s September 30 issue, online and in print.  

      Return to Newsletter Explore More
      2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago 1 min read Visitors Explore NASA at Ingenuity Fest 
      Article 15 mins ago
      View the full article
  • Check out these Videos

×
×
  • Create New...