Jump to content

NASA Coverage of Rescheduled Spacewalk Preparing for New Solar Array


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By NASA
      5 min read
      5 Surprising NASA Heliophysics Discoveries Not Related to the Sun
      With NASA’s fleet of heliophysics spacecraft, scientists monitor our Sun and investigate its influences throughout the solar system. However, the fleet’s constant watch and often-unique perspectives sometimes create opportunities to make discoveries that no one expected, helping us to solve mysteries about of the solar system and beyond.
      Here are five examples of breakthroughs made by NASA heliophysics missions in other fields of science.
      This graphic shows missions in NASA’s Heliophysics Division fleet as of July 2024. NASA Thousands and Thousands of Comets
      The SOHO mission — short for Solar and Heliospheric Observatory, which is a joint mission between ESA (European Space Agency) and NASA — has a coronagraph that blocks out the Sun in order to see the Sun’s faint outer atmosphere, or corona. 
      It turns out SOHO’s coronagraph also makes it easy to spot sungrazing comets, those that pass so close to the Sun that other observatories can’t see them against the brightness of our star.
      Before SOHO was launched in December 1995, fewer than 20 sungrazing comets were known. Since then, SOHO has discovered more than 5,000. 
      The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and identify comet families, descended from ancestor comets that broke up long ago.

      Learn More

      Two sungrazing comets fly close to the Sun in these images captured by ESA/NASA’s SOHO (Solar and Heliospheric Observatory). They were the 3,999th and 4,000th comets discovered in SOHO images. ESA/NASA/SOHO/Karl Battams Dimming of a Supergiant
      In late 2019, the supergiant star Betelgeuse began dimming unexpectedly. Telescopes all over the world — ​​​​and around it — tracked these changes until a few months later when Betelgeuse appeared too close to the Sun to observe. That’s when NASA’s STEREO (Sun-watching Solar Terrestrial Relations Observatory (STEREO) came to the rescue. 
      For several weeks in the middle of 2020, STEREO was the only observatory able to see Betelgeuse. At the time, the STEREO-A spacecraft was trailing behind Earth, at a vantage point where Betelgeuse was still far enough away from the Sun to be seen. This allowed astronomers to keep tabs on the star while it was out of view from Earth.  
      STEREO’s observations revealed another unexpected dimming between June and August of 2020, when ground-based telescopes couldn’t view the star.
      Astronomers later concluded that these dimming episodes were caused by an ejection of mass from Betelgeuse — like a coronal mass ejection from our Sun but with about 400 times more mass — which obscured part of the star’s bright surface.

      Learn More

      The background image shows the star Betelgeuse as seen by the Heliospheric Imager aboard NASA’s STEREO (Solar Terrestrial Relations Observatory) spacecraft. The inset figure shows measurements of Betelgeuse’s brightness taken by different observatories from late 2018 to late 2020. STEREO’s observations, marked in red, revealed an unexpected dimming in mid-2020 when Betelgeuse appeared too close to the Sun for other observatories to view it. NASA/STEREO/HI (background); Dupree et al. (inset) The Glowing Surface of Venus
      NASA’s Parker Solar Probe studies the Sun’s corona up close — by flying through it. To dive into the Sun’s outer atmosphere, the spacecraft has flown past Venus several times, using the planet’s gravity to fling itself closer and closer to the Sun.
      On July 11, 2020, during Parker’s third Venus flyby, scientists used Parker’s wide-field imager, called WISPR, to try to measure the speed of the clouds that obscure Venus’ surface. Surprisingly, WISPR not only observed the clouds, it also saw through them to the surface below.
      The images from that flyby and the next (in 2021) revealed a faint glow from Venus’ hot surface in near-infrared light and long wavelengths of red (visible) light that maps distinctive features like mountainous regions, plains, and plateaus.
      Scientists aimed WISPR at Venus again on Nov. 6, 2024, during Parker’s seventh flyby, observing a different part of the planet than previous flybys. With these images, they’re hoping to learn more about Venus’ surface geology, mineralogy, and evolution.

      Learn More

      As Parker Solar Probe flew by Venus on its fourth flyby, it captured these images, strung into a video, showing bright and dark features on the nightside surface of the planet. NASA/APL/NRL The Brightest Gamma-Ray Burst
      You’ve heard of the GOAT. But have you heard of the BOAT?
      It stands for the “brightest of all time”, a gamma-ray burst discovered on Oct. 9, 2022.  
      A gamma-ray burst is a brief but intense eruption of gamma rays in space, lasting from seconds to hours.
      This one, named GRB 221009A, glowed brilliantly for about 10 minutes in the constellation Sagitta before slowly fading.
      The burst was detected by dozens of spacecraft, including NASA’s Wind, which studies the perpetual flow of particles from the Sun, called the solar wind, just before it reaches Earth.
      Wind and NASA’s Fermi Gamma-Ray Space Telescope measured the brightness of GRB 221009A, showing that it was 70 times brighter than any other gamma-ray burst ever recorded by humans — solidifying its status as the BOAT.

      Learn More

      Astronomers think GRB 221009A represents the birth of a new black hole formed within the heart of a collapsing star. In this artist’s concept, the black hole drives powerful jets of particles traveling near the speed of light. The jets emit X-rays and gamma rays as they stream into space. NASA/Swift/Cruz deWilde A Volcano Blasts Its Way to Space
      NASA’s ICON (Ionospheric Connection Explorer) launched in 2019 to study how Earth’s weather interacts with weather from space. When the underwater Hunga Tonga-Hunga Ha‘apai volcano erupted on Jan. 15, 2022, ICON helped show that the volcano produced more than ash and tsunami waves — its effects reached the edge of space.
      In the hours after the eruption, ICON detected hurricane-speed winds in the ionosphere — Earth’s electrified upper atmospheric layer at the edge of space. ICON clocked the wind speeds at up to 450 miles per hour, making them the strongest winds the mission had ever measured below 120 miles altitude.
      The ESA Swarm mission revealed that these extreme winds altered an electric current in the ionosphere called the equatorial electrojet. After the eruption, the equatorial electrojet surged to five times its normal peak power and dramatically flipped direction.
      Scientists were surprised that a volcano could affect the electrojet so severely — something they’d only seen during a strong geomagnetic storm caused by an eruption from the Sun.

      Learn More

      The Hunga Tonga-Hunga Ha’apai eruption on Jan. 15, 2022, caused many effects, some illustrated here, that were felt around the world and even into space. Some of those effects, like extreme winds and unusual electric currents were picked up by NASA’s ICON (Ionospheric Connection Explorer) mission and ESA’s (the European Space Agency) Swarm. Illustration is not to scale.  NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 20, 2024 Related Terms
      Comets Fermi Gamma-Ray Space Telescope Gamma-Ray Bursts Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Parker Solar Probe (PSP) SOHO (Solar and Heliospheric Observatory) Stars STEREO (Solar TErrestrial RElations Observatory) The Sun The Sun & Solar Physics Uncategorized Venus Volcanoes Wind Mission Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode


      Article


      3 hours ago
      4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
      Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…


      Article


      5 days ago
      4 min read NASA’s Swift Studies Gas-Churning Monster Black Holes


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...