Members Can Post Anonymously On This Site
The phenomenon 'Terminal Lucidity' the end-of-life transition
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Overview
Welcome to the Career Transition Assistance Plan (CTAP) services page. Provided here are different resources to support informed steps toward a new career opportunity in the public or private sector.
Transition Assistance
NASA is partnering with OPM to offer a 1-day workshop covering multiple areas associated with career transitions. The workshop will be offered virtually on pre-scheduled dates and will include:
Career Exploration (1 Hour) Job Search Strategy (1 Hour) Resume Writing (2 Hours) Interview Techniques (2 Hours) One-On-One Counseling NASA will follow-up with employees eligible for CTAP to enroll them in the workshop and share participation details.
Transition Resources
Below are links to guidance, resources, and tools that are helpful during a career move, including resume preparation, interview preparation, networking strategies, job search assistance, and more.
Resume Preparation
Resources to help craft strong professional resumes that showcase personal skills and experience, including specialized training and tools.
General
Resume Tips Brochure to Launch Your Career
JPL Resume Workshop
Writing an Effective Resume
CareerOneStop
Federal/State/Local Government
Federal employees who have been displaced due to a Reduction in Force (RIF) may be eligible for priority selection for another federal job under the CTAP. In their USAJOBS profiles, they can indicate their CTAP eligibility under the Federal Service section and make their resume and profile searchable for Agency Talent Portal (ATP) users by selecting a saved resume under the Documents tab.
How to Build a Resume
What Should I Include in My Resume
How to Make Your Resume and Profile Searchable
Private Sector
Creating A Successful Private Sector Resume from Your Federal Resume
Beyond Federal Service: How to Transition to the Private Sector
Interview Coaching
Resources to prepare for job interviews and improve interview skills, including information about the interview process, how to prepare and respond to interview questions, and platforms to conduct practice interviews and receive feedback on responses.
Interview Process
Interview Tips from Department of Labor
Interview Tips from DOL’s CareerOneStop
Interview Responses
STAR Method: How to Use This Technique to Ace Your Next Job Interview
Interview Practice
Barclays Virtual Interview Practice Tool (Free)
Google Interview Warmup (Free)
Pramp (Free)
Networking
Guidance on how to leverage LinkedIn for job search and professional networking, and providing feedback on LinkedIn profiles, optimizing keywords, and increasing visibility to recruiters.
Rock Your LinkedIn Profile Learning Series Videos
LinkedIn Profile Best Practices
LinkedIn Profile Summary Best Practices
Leveraging LinkedIn for Job Search Success
Make the Most of LinkedIn for Your Job Search
Forming a Network
Job Information/Job Search Assistance
Free online resources for identifying adjacent or new career opportunities, including job matching websites and websites offering personality or career assessments.
Career Search
CareerOneStop
O*NET Online
Self-Assessment
CareerExplorer Assessment
CareerOneStop Self-Assessments
O*NET Interest Profiler
USAJOBS Career Explorer
Job Search
Apprenticeship Job Finder
CareerOneStop Job Search
Indeed
Monster
USAJOBS
ZipRecruiter
Other
CareerOneStop Find American Job Centers
Retraining
Free and fee-based online e-learning resources to enhance current skills or acquire new skills.
Codeacademy
Coursera
edX
Harvard Online Learning
Khan Academy
LinkedIn Learning
MasterClass
MIT OpenCourseWare
Skillshare
Stanford Online
Udemy
Employment Counseling
NASA’s Employee Assistance Program (EAP) offers free, confidential counseling that can be used to obtain employment counseling and support during a career transition, as well as referrals to other needed resources.
NASA Enterprise EAP Page
NASA Center EAP Pages
Additional Transition Resources
There are also additional career transition resources available through OPM including:
The Employee’s Guide to Career Transition
Share
Details
Last Updated Mar 24, 2025 Related Terms
General
View the full article
-
By USH
Have you ever looked up and seen the sky split into two distinct colors, one side glowing red while the other remains a dull gray? At first glance, it may seem like a natural optical effect, but it is not!
Watch video of this bizarre sky phenomenon below.
This phenomenon has been observed before, and many believe it is not just a random occurrence. Instead, it could be the result of large-scale geoengineering projects, deliberate interventions in Earth's climate system. These efforts, often carried out under the guise of combating climate change, may actually be disrupting natural atmospheric processes.
Strange, unnatural-looking clouds, such as square formations and other unusual weather anomalies, may also be linked to these operations.
Additionally, the infamous chemtrails are a product of weather manipulation, involving the release of chemicals into the lower stratosphere. Proponents argue that these methods help mitigate global warming, but that is not true, these sprayings really doing more harm than good.
While mainstream narratives push the climate change (hoax) agenda and link climate change to human activity and greenhouse gas emissions, an increasing number of scientists step forward and explain that natural Earth cycles, particularly its position relative to the sun, play a significant role in climate shifts. They point to Milankovitch cycles—long-term variations in Earth's orbit and axial tilt, which have historically played a key role in global temperature changes.
Interestingly, it seems that some high-ranking government officials are beginning to question the effects of geoengineering. If action is taken to regulate or halt these practices, we may once again witness unaltered, natural skies. Until then, all we can do is observe, question, and seek the truth. View the full article
-
By Space Force
U.S. Space Force and U.S. Space Operations Command have transitioned two additional Space Deltas to fully-integrated Mission Deltas under the Unified Mission Readiness concept, marked by ceremonies Oct. 30-31, 2024.
View the full article
-
By USH
Over the years, numerous mysterious events have been witnessed in the sky, defying explanation. Recently, yet another unusual sky phenomenon was observed over Southern Australia capturing attention and sparking curiosity.
Video footage reveals what appears to be a dome-shaped structure, with an even stranger detail: lightning seems to bounce off or perhaps even originate from within the dome.
The mysterious formation has led to numerous theories. Some viewers suggest it could be a unique (red) rainbow or a rare weather event like a haboob (sandstorm). Others speculate it might be the result of weather manipulation or even an energy field projected over the region.
Opinions also vary on the lightning, some say it’s bouncing off the dome, while others believe it could be emanating from within. Although it may just be an unusual natural phenomenon, the seemly strange interaction with the lightning remains unexplained.
View the full article
-
By NASA
4 Min Read NASA Terminal Transmits First Laser Communications Uplink to Space
NASA's LCOT (Low-Cost Optical Terminal) located at the agency's Goddard Space Flight Center in Greenbelt, Md. Credits: NASA NASA’s LCOT (Low-Cost Optical Terminal), a ground station made of modified commercial hardware, transmitted its first laser communications uplink to the TBIRD (TeraByte Infrared Delivery), a tissue box-sized payload formerly in low Earth orbit.
During the first live sky test, NASA’s LCOT produced enough uplink intensity for the TBIRD payload to identify the laser beacon, connect, and maintain a connection to the ground station for over three minutes. This successful test marks an important achievement for laser communications: connecting LCOT’s laser beacon from Earth to TBIRD required one milliradian of pointing accuracy, the equivalent of hitting a three-foot target from over eight American football fields away.
The test was one of many laser communications achievements TBIRD made possible during its successful, two-year mission. Prior to its mission completion on Sept. 15, 2024, the payload transmitted at a record-breaking 200 gigabits per second. In an actual use case, TBIRD’s three-minute connection time with LCOT would be sufficient to return over five terabytes of critical science data, the equivalent of over 2,500 hours of high-definition video in a single pass. As the LCOT sky test demonstrates, the ultra-high-speed capabilities of laser communications will allow science missions to maintain their connection to Earth as they travel farther than ever before.
Measurement data of the power, or “fluency,” of the connection between NASA’s LCOT (Low-Cost Optical Terminal) laser beacon and TBIRD’s (TeraByte Infrared Delivery) receiver provided by Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL). LCOT and TBIRD maintained a sufficient connection for over three minutes — enough time for TBIRD to return over five terabytes of data. NASA/Dave Ryan NASA’s SCaN (Space Communications and Navigation) program office is implementing laser communications technology in various orbits, including the upcoming Artemis II mission, to demonstrate its potential impact in the agency’s mission to explore, innovate, and inspire discovery.
“Optical, or laser, communications can transfer 10 to 100 times more data than radio frequency waves,” said Kevin Coggins, deputy associate administrator and SCaN program manager. “Literally, it’s the wave of the future, as it’ll enable scientists to realize an ever-increasing amount of data from their missions and will serve as our critical lifeline for astronauts traveling to and from Mars.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
A recording of TBIRD’s (TeraByte Infrared Delivery) successful downlink from NASA’s LCOT (Low-Cost Optical Terminal) Wide Field Camera. The light saturation from the downlink caused a secondary reflection in the upper right of the video.NASA Historically, space missions have used radio frequencies to send data to and from space, but with science instruments capturing more data, communications assets must meet increasing demand. The infrared light used for laser communications transmits the data at a shorter wavelength than radio, meaning ground stations on Earth can send and receive more data per second.
The LCOT team continues to refine pointing capabilities through additional tests with NASA’s LCRD (Laser Communications Relay Demonstration). As LCOT and the agency’s other laser communications missions continue to reach new milestones in connectivity and accessibility, they demonstrate laser communications’ potential to revolutionize scientists’ access to new data about Earth, our solar system, and beyond.
“It’s a testament to the hard work and skill of the entire team,” said Dr. Haleh Safavi, project lead for LCOT. “We work with very complicated and sensitive transmission equipment that must be installed with incredible precision. These results required expeditious planning and execution at every level.”
NASA’s LCOT (Low-Cost Optical Terminal) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, uses slightly modified commercial hardware to reduce the expense of implementing laser communications technology. NASA Experiments like TBIRD and LCRD are only two of SCaN’s multiple in-space demonstrations of laser communications, but a robust laser communications network relies on easily reconfigurable ground stations on Earth. The LCOT ground station showcases how the government and aerospace industry can build and deploy flexible laser communications ground stations to meet the needs of a wide variety of NASA and commercial missions, and how these ground stations open new doors for communications technology and extremely high data volume transmission.
NASA’s LCOT is developed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. TBIRD was developed in partnership with the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington. TBIRD was flown and operated as a collaborative effort among NASA Goddard; NASA’s Ames Research Center in California’s Silicon Valley; NASA’s Jet Propulsion Laboratory in Southern California; MIT-LL; and Terran Orbital Corporation in Irvine, California. Funding and oversight for LCOT and other laser communications demonstrations comes from the (SCaN) Space Communications and Navigation program office within the Space Operations Mission Directorate at NASA Headquarters in Washington.
About the Author
Korine Powers
Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
Share
Details
Last Updated Oct 09, 2024 EditorKorine PowersContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related Terms
Space Communications Technology Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate Technology Technology Demonstration View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.