Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This mosaic showing the Martian surface outside of Jezero Crater was taken by NASA’s Perseverance on Dec. 25, 2024, at the site where the rover cored a sample dubbed “Silver Mountain” from a rock likely formed during Mars’ earliest geologic period.NASA/JPL-Caltech/ASU/MSSS The diversity of rock types along the rim of Jezero Crater offers a wide glimpse of Martian history.
      Scientists with NASA’s Perseverance rover are exploring what they consider a veritable Martian cornucopia full of intriguing rocky outcrops on the rim of Jezero Crater. Studying rocks, boulders, and outcrops helps scientists understand the planet’s history, evolution, and potential for past or present habitability. Since January, the rover has cored five rocks on the rim, sealing samples from three of them in sample tubes. It’s also performed up-close analysis of seven rocks and analyzed another 83 from afar by zapping them with a laser. This is the mission’s fastest science-collection tempo since the rover landed on the Red Planet more than four years ago.
      Perseverance climbed the western wall of Jezero Crater for 3½ months, reaching the rim on Dec. 12, 2024, and is currently exploring a roughly 445-foot-tall (135-meter-tall) slope the science team calls “Witch Hazel Hill.” The diversity of rocks they have found there has gone beyond their expectations.
      “During previous science campaigns in Jezero, it could take several months to find a rock that was significantly different from the last rock we sampled and scientifically unique enough for sampling,” said Perseverance’s project scientist, Katie Stack Morgan of NASA’s Jet Propulsion Laboratory in Southern California. “But up here on the crater rim, there are new and intriguing rocks everywhere the rover turns. It has been all we had hoped for and more.”
      One of Perseverance’s hazard cameras captured the rover’s coring drill collecting the “Main River” rock sample on “Witch Hazel Hill” on March 10, 2025, the 1,441st Martian day, or sol, of the mission. NASA/JPL-Caltech That’s because Jezero Crater’s western rim contains tons of fragmented once-molten rocks that were knocked out of their subterranean home billions of years ago by one or more meteor impacts, including possibly the one that produced Jezero Crater. Perseverance is finding these formerly underground boulders juxtaposed with well-preserved layered rocks that were “born” billions of years ago on what would become the crater’s rim. And just a short drive away is a boulder showing signs that it was modified by water nestled beside one that saw little water in its past.
      Oldest Sample Yet?
      Perseverance collected its first crater-rim rock sample, named “Silver Mountain,” on Jan. 28. (NASA scientists informally nickname Martian features, including rocks and, separately, rock samples, to help keep track of them.) The rock it came from, called “Shallow Bay,” most likely formed at least 3.9 billion years ago during Mars’ earliest geologic period, the Noachian, and it may have been broken up and recrystallized during an ancient meteor impact.
      About 360 feet (110 meters) away from that sampling site is an outcrop that caught the science team’s eye because it contains igneous minerals crystallized from magma deep in the Martian crust. (Igneous rocks can form deep underground from magma or from volcanic activity at the surface, and they are excellent record-keepers — particularly because mineral crystals within them preserve details about the precise moment they formed.) But after two coring attempts (on Feb. 4 and Feb. 8) fizzled due to the rock being so crumbly, the rover drove about 520 feet (160 meters) northwest to another scientifically intriguing rock, dubbed “Tablelands.”
      Data from the rover’s instruments indicates that Tablelands is made almost entirely of serpentine minerals, which form when large amounts of water react with iron- and magnesium-bearing minerals in igneous rock. During this process, called serpentinization, the rock’s original structure and mineralogy change, often causing it to expand and fracture. Byproducts of the process sometimes include hydrogen gas, which can lead to the generation of methane in the presence of carbon dioxide. On Earth, such rocks can support microbial communities.
      Coring Tablelands went smoothly. But sealing it became an engineering challenge.
      Sealing the “Green Gardens” sample — collected by NASA’s Perseverance Mars rover from a rock dubbed “Tablelands” along the rim of Jezero Crater on Feb. 16, 2025 — pre-sented an engineering challenge. The sample was finally sealed on March 2.NASA/JPL-Caltech/ASU/MSSS Flick Maneuver
      “This happened once before, when there was enough powdered rock at the top of the tube that it interfered with getting a perfect seal,” said Kyle Kaplan, a robotics engineer at JPL. “For Tablelands, we pulled out all the stops. Over 13 sols,” or Martian days, “we used a tool to brush out the top of the tube 33 times and made eight sealing attempts. We even flicked it a second time.”
      During a flick maneuver, the sample handling arm — a little robotic arm in the rover’s belly — presses the tube against a wall inside the rover, then pulls the tube away, causing it to vibrate. On March 2, the combination of flicks and brushings cleaned the tube’s top opening enough for Perseverance to seal and store the serpentine-laden rock sample. 
      Eight days later, the rover had no issues sealing its third rim sample, from a rock called “Main River.” The alternating bright and dark bands on the rock were like nothing the science team had seen before.
      Up Next
      Following the collection of the Main River sample, the rover has continued exploring Witch Hazel Hill, analyzing three more rocky outcrops (“Sally’s Cove,” “Dennis Pond,” and “Mount Pearl”). And the team isn’t done yet.  
      “The last four months have been a whirlwind for the science team, and we still feel that Witch Hazel Hill has more to tell us,” said Stack. “We’ll use all the rover data gathered recently to decide if and where to collect the next sample from the crater rim. Crater rims — you gotta love ’em.”
      More About Perseverance
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and is the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2025-051
      Share
      Details
      Last Updated Apr 10, 2025 Related Terms
      Perseverance (Rover) Mars Mars 2020 Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 7 days ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 2 weeks ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 6 Min Read NASA’s Hubble Finds Kuiper Belt Duo May Be Trio
      This artist’s concept depicts one of the possible scenarios for the 148780 Altjira system in the solar system’s Kuiper Belt. Credits:
      NASA, ESA, Joseph Olmsted (STScI) The puzzle of predicting how three gravitationally bound bodies move in space has challenged mathematicians for centuries, and has most recently been popularized in the novel and television show “3 Body Problem.” There’s no problem, however, with what a team of researchers say is likely a stable trio of icy space rocks in the solar system’s Kuiper Belt, found using data from NASA’s Hubble Space Telescope and the ground-based W. M. Keck Observatory in Hawaii.
      If confirmed as the second such three-body system found in the region, the 148780 Altjira system suggests there could be similar triples waiting to be discovered, which would support a particular theory of our solar system’s history and the formation of Kuiper Belt objects (KBOs).
      “The universe is filled with a range of three-body systems, including the closest stars to Earth, the Alpha Centauri star system, and we’re finding that the Kuiper Belt may be no exception,” said the study’s lead author Maia Nelsen, a physics and astronomy graduate of Brigham Young University in Provo, Utah.  
      Known since 1992, KBOs are primitive icy remnants from the early solar system found beyond the orbit of Neptune. To date, over 3,000 KBOs have been cataloged, and scientists estimate there could be several hundred thousand more that measure over 10 miles in diameter. The largest KBO is dwarf planet Pluto. 
      The Hubble finding is crucial support for a KBO formation theory, in which three small rocky bodies would not be the result of collision in a busy Kuiper Belt, but instead form as a trio directly from the gravitational collapse of matter in the disk of material surrounding the newly formed Sun, around 4.5 billion years ago. It’s well known that stars form by gravitational collapse of gas, commonly as pairs or triples, but that idea that cosmic objects like those in the Kuiper Belt form in a similar way is still under investigation.
      This artist’s concept depicts one of the possible scenarios for the 148780 Altjira system in the solar system’s Kuiper Belt. It is likely a hierarchical triple formation, in which two very close companions are orbited by a third member at a greater distance. The inner bodies are too close together to be resolved by the Hubble Space Telescope. But Hubble observations of the orbit of the outermost object were used to determine that the central body is not a single spherical object. Other possibilities are that the inner object is a contact binary, where two separate bodies become so close they touch each other. Another idea is that the central body is oddly flat, like a pancake. Of the 40 identified binary objects in the Kuiper Belt, another system, Lempo, has been found to be a triple. The Altjira system is located in the outer reaches of the solar system, 3.7 billion miles away, or 44 times the distance between Earth and the Sun. In this artist’s concept, our Sun is in the constellation Sagittarius, with the Milky Way in the background. The bright red star Antares appears at the top center. Dust in the plane of our solar system glows as zodiacal light. NASA, ESA, Joseph Olmsted (STScI) The Altjira system is located in the outer reaches of the solar system, 3.7 billion miles away, or 44 times the distance between Earth and the Sun. Hubble images show two KBOs located about 4,700 miles (7,600 kilometers) apart. However, researchers say that repeated observations of the objects’ unique co-orbital motion indicate the inner object is actually two bodies that are so close together they can’t be distinguished at such a great distance.
      “With objects this small and far away, the separation between the two inner members of the system is a fraction of a pixel on Hubble’s camera, so you have to use non-imaging methods to discover that it’s a triple,” said Nelsen.
      This takes time and patience, Nelsen explained. Scientists have gathered a 17-year observational baseline of data from Hubble and the Keck Observatory, watching the orbit of the Altjira system’s outer object.
      “Over time, we saw the orientation of the outer object’s orbit change, indicating that the inner object was either very elongated or actually two separate objects,” said Darin Ragozzine, also of Brigham Young University, a co-author of the Altjira study.
      “A triple system was the best fit when we put the Hubble data into different modeling scenarios,” said Nelsen. “Other possibilities are that the inner object is a contact binary, where two separate bodies become so close they touch each other, or something that actually is oddly flat, like a pancake.”
      Currently, there are about 40 identified binary objects in the Kuiper Belt. Now, with two of these systems likely triples, the researchers say it is more likely they are looking not at an oddball, but instead a population of three-body systems, formed by the same circumstances. However, building up that evidence takes time and repeated observations. 
      Recent research using data from the Keck Observatory and NASA’s Hubble Space Telescope has revealed a potential three-body system in the Kuiper Belt, known as the Altjira system. This discovery challenges traditional collision theories by suggesting that these triple systems might form directly from the gravitational collapse of material in the early solar disk.
      Nasa’s Goddard Space Flight Center; Producer: Paul Morris The only Kuiper Belt objects that have been explored in detail are Pluto and the smaller object Arrokoth, which NASA’s New Horizons mission visited in 2015 and 2019, respectively. New Horizons showed that Arrokoth is a contact binary, which for KBOs means that two objects that have moved closer and closer to one another are now touching and/or have merged, often resulting in a peanut shape. Ragozzine describes Altjira as a “cousin” of Arrokoth, a member of the same group of Kuiper Belt objects. They estimate Altjira is 10 times larger than Arrokoth, however, at 124 miles (200 kilometers) wide.
      While there is no mission planned to fly by Altjira to get Arrokoth-level detail, Nelsen said there is a different upcoming opportunity for further study of the intriguing system. “Altjira has entered an eclipsing season, where the outer body passes in front of the central body. This will last for the next ten years, giving scientists a great opportunity to learn more about it,” Nelsen said. NASA’s James Webb Space Telescope is also joining in on the study of Altjira as it will check if the components look the same in its upcoming Cycle 3 observations. 
      The Hubble study is published in The Planetary Science Journal.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, Maryland
      Leah Ramsay
      Space Telescope Science Institute, Baltimore, Maryland
      Ray Villard
      Space Telescope Science Institute, Baltimore, Maryland
      Share








      Details
      Last Updated Mar 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science The Kuiper Belt Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Uncovering Icy Objects in the Kuiper Belt



      Hubble’s Night Sky Challenge



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Perseverance Blasts Past the Top of Jezero Crater Rim
      This SuperCam Remote Micro-Imager (RMI) mosaic shows part of the target “Duran,” observed on Sol 1357 near the top of Jezero crater’s rim. It was processed using a color-enhancing Gaussian stretch algorithm. NASA/JPL-Caltech/LANL/CNES/IRAP. I have always loved the mountains. Growing up on the flat plains of Midwestern USA, every summer I looked forward to spending a few days on alpine trails while on vacation. Climbing upward from the trailhead, the views changed constantly. After climbing a short distance, the best views were often had by looking back down on where we had started. As we climbed higher, views of the valleys below eventually became shrouded in haze. Near the top we got our last views of the region behind us; then it disappeared from view as we hiked over the pass and started down the other side. Approaching the summit held a special reward, as the regions beyond the pass slowly revealed themselves. Frequent stops to catch our breath during our ascent were used to check the map to identify the new peaks and other features that came into view. Sometimes the pass was an exciting gateway to a whole new area to explore.
      This ever-changing landscape has been our constant companion over the last five months as Perseverance first climbed out of Neretva Vallis, then past “Dox Castle,” and “Pico Turquino.” We stopped at “Faraway Rock” on Sol 1282 to get a panorama of the crater floor. More recently, we could see many more peaks of the crater rim. As Perseverance crested the summit of “Lookout Hill,” half a mile (800 meters) above the traverse’s lowest point, we got our first views beyond the crater rim, out into the great unknown expanse of Mars’ Nili Planum, including the upper reaches of Neretva Vallis and the locations of two other candidate landing sites that were once considered for Perseverance. As the rover crested the summit, Mastcam-Z took a large panoramic mosaic, and team members are excitedly poring over the images, looking at all the new features. With Perseverance’s powerful cameras we can analyze small geological features such as boulders, fluvial bars, and dunes more than 5 miles (8 kilometers) distant, and major features like mountains up to 35 miles (60 kilometers) away. One of our team members excitedly exclaimed, “This is an epic moment in Mars exploration!”
      While Curiosity has been climbing “Mount Sharp” for 10 years, and Spirit and Opportunity explored several smaller craters, no extraterrestrial rover has driven out of such a huge crater as Jezero to see a whole new “continent” ahead. We are particularly excited because it is potentially some of the most ancient surface on the Red Planet. Let’s go explore it!
      Perseverance is now in Gros Morne quad, named for a beautiful Canadian national park in Newfoundland, and we will be naming our targets using locations and features in the national park. For the drive ahead, described in a video in a recent press release, our next destination is on the lower western edge of the Jezero crater rim at a region named “Witch Hazel Hill.”
      Perseverance made more than 250 meters of progress over the weekend (about 820 feet) and is already at the upper part of Witch Hazel Hill, a location called “South Arm.” Much of the climb up the crater rim was on sandy material without many rocks to analyze. Witch Hazel Hill appears to have much more exposed rock, and the science team is excited about the opportunity for better views and analyses of the geology directly beneath our wheels.
      Written by Roger C. Wiens, Principal Investigator of the SuperCam instrument, Purdue University
      Share








      Details
      Last Updated Dec 19, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4396-4397: Roving in a Martian Wonderland


      Article


      2 days ago
      2 min read Sols 4393-4395: Weekend Work at the Base of Texoli Butte


      Article


      3 days ago
      3 min read Sols 4391-4392: Rounding the Bend


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance Mars rover used its right-front navigation camera to capture this first view over the rim of Jezero Crater on Dec. 10, 2024, the 1,354th Martian day, or sol, of the mission. The camera is facing west from a location nicknamed “Lookout Hill.”NASA/JPL-Caltech NASA’s Perseverance Mars rover captured this scene showing the slippery terrain that’s made its climb up to the rim of Jezero Crater challenging. Rover tracks can be seen trailing off into the distance, back toward the crater’s floor.NASA/JPL-Caltech The road ahead will be even more scientifically intriguing, and probably somewhat easier-going, now that the six-wheeler has completed its long climb to the top.
      NASA’s Perseverance Mars rover has crested the top of Jezero Crater’s rim at a location the science team calls “Lookout Hill” and rolling toward its first science stop after the monthslong climb. The rover made the ascent in order to explore a region of Mars unlike anywhere it has investigated before.
      Taking about 3½ months and ascending 1,640 vertical feet (500 vertical meters), the rover climbed 20% grades, making stops along the way for science observations. Perseverance’s science team shared some of their work and future plans at a media briefing held Thursday, Dec. 12, in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
      “During the Jezero Crater rim climb, our rover drivers have done an amazing job negotiating some of the toughest terrain we’ve encountered since landing,” said Steven Lee, deputy project manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “They developed innovative approaches to overcome these challenges — even tried driving backward to see if it would help — and the rover has come through it all like a champ. Perseverance is ‘go’ for everything the science team wants to throw at it during this next science campaign.”
      A scan across a panorama captured by NASA’s Perseverance Mars rover shows the steepness of the terrain leading to the rim of Jezero Crater. The rover’s Mastcam-Z camera system took the images that make up this view on Dec. 5. NASA/JPL-Caltech/ASU/MSSS Since landing at Jezero in February 2021, Perseverance has completed four science campaigns: the “Crater Floor,” “Fan Front,” “Upper Fan,” and “Margin Unit.” The science team is calling Perseverance’s fifth campaign the “Northern Rim” because its route covers the northern part of the southwestern section of Jezero’s rim. Over the first year of the Northern Rim campaign, the rover is expected to visit as many as four sites of geologic interest, take several samples, and drive about 4 miles (6.4 kilometers).
      “The Northern Rim campaign brings us completely new scientific riches as Perseverance roves into fundamentally new geology,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena. “It marks our transition from rocks that partially filled Jezero Crater when it was formed by a massive impact about 3.9 billion years ago to rocks from deep down inside Mars that were thrown upward to form the crater rim after impact.”
      This animation shows the position of NASA’s Perseverance Mars rover as of Dec. 4, 2024, the 1,347th Martian day, or sol, of the mission, along with the proposed route of the mission’s fifth science campaign, dubbed Northern Rim, over the next several years. NASA/JPL-Caltech/ESA/University of Arizona “These rocks represent pieces of early Martian crust and are among the oldest rocks found anywhere in the solar system. Investigating them could help us understand what Mars — and our own planet — may have looked like in the beginning,” Farley added.
      First Stop: ‘Witch Hazel Hill’
      With Lookout Hill in its rearview mirror, Perseverance is headed to a scientifically significant rocky outcrop about 1,500 feet (450 meters) down the other side of the rim that the science team calls “Witch Hazel Hill.”
      “The campaign starts off with a bang because Witch Hazel Hill represents over 330 feet of layered outcrop, where each layer is like a page in the book of Martian history. As we drive down the hill, we will be going back in time, investigating the ancient environments of Mars recorded in the crater rim,” said Candice Bedford, a Perseverance scientist from Purdue University in West Layfette, Indiana. “Then, after a steep descent, we take our first turns of the wheel away from the crater rim toward ‘Lac de Charmes,’ about 2 miles south.”
      Lac de Charmes intrigues the science team because, being located on the plains beyond the rim, it is less likely to have been significantly affected by the formation of Jezero Crater.
      After leaving Lac de Charmes, the rover will traverse about a mile (1.6 kilometers) back to the rim to investigate a stunning outcrop of large blocks known as megabreccia. These blocks may represent ancient bedrock broken up during the Isidis impact, a planet-altering event that likely excavated deep into the Martian crust as it created an impact basin some 745 miles (1,200 kilometers) wide, 3.9 billion years in the past.
      More About Perseverance
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-174
      Share
      Details
      Last Updated Dec 12, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
      5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 21 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
      Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
      Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Margin’ up the Crater Rim!
      NASA’s Mars rover Perseverance conducts proximity science on the Eremita Mesa abrasion patch in the Margin Unit on Sept. 6, 2024, as it continues its traverse up the rim of Jezero Crater. Perseverance acquired the image using its Front Left Hazard Avoidance Camera A (Hazcam) on sol 1261 — Martian day 1,261 of the Mars 2020 mission — at the local mean solar time of 13:53:53. NASA/JPL-Caltech To conclude its exploration of the mysterious margin unit before it ascends the rim of Jezero Crater, Perseverance made one last stop this past week to investigate these strange rocks at “Eremita Mesa.”
      Since beginning its steep drive up the crater rim, Perseverance has been traversing along the edge of the margin unit (the margin of the margin!), an enigmatic unit rich in carbonates, a mineral group closely linked to habitability. Here, the rover team scouted out a mound of rock called “Specter Chasm,” where Perseverance cleared away the dusty, weathered surface with its trusty abrading bit. The resulting abraded patch, called Eremita Mesa, is pictured above being investigated by Perseverance’s proximity science instruments mounted on its robotic arm. This includes taking close-up images to examine the millimeter-scale particles that make up the rock, using the WATSON (Wide Angle Topographic Sensor for Operations and eNgineering) camera, which functions as Perseverance’s magnifying glass.
      Before the rover began exploring, investigations using orbital satellite data had suggested the margin unit rocks may have formed in several different ways. Theories the team has been exploring include that the unit formed on the shoreline of the ancient lake that once filled Jezero Crater, or instead that it was produced by volcanic processes such as pyroclastic flows or ashfall, or ancient lavas flowing into the crater. Since Perseverance began its investigation of the unit in September 2023, more than 350 sols ago (1 sol = 1 Mars day), the Science Team has been scouring data collected by the rover’s instruments to help constrain the unit’s origin. So far, this has remained largely a mystery, with the original rock textures potentially heavily affected by alteration since it formed more than 3 billion years ago. Perseverance has already collected three exciting samples of this curious rock unit for future Earth return: “Pelican Point,” “Lefroy Bay,” and “Comet Geyser,” and the team is hoping the data collected at Eremita Mesa could help further constrain the ancient processes on Mars that formed these strange rocks.
      Next, it’s onwards and upwards for Perseverance as it faces a steep climb up the crater rim, where perhaps even more exotic and exciting rocks await!
      Written by Alex Jones, Ph.D. student at Imperial College London
      Share








      Details
      Last Updated Sep 10, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4300-4301: Rippled Pages


      Article


      6 hours ago
      2 min read Sols 4297-4299: This Way to Tungsten Hills


      Article


      17 hours ago
      2 min read Persevering Through the Storm
      It’s dust-storm season on Mars! Over the past couple of weeks, as we ascended the…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...