Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      SecAF Kendall delivered a speech to USAFA cadets about the qualities necessary for strong leadership and why capable, insightful, moral leaders are more essential than ever in defense of the nation.

      View the full article
    • By SpaceX
      Starship | Fifth Flight Test
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images
      This image shows just how variable and interesting the terrain is in the area that NASA’s Mars rover Curiosity is currently investigating. Curiosity captured this long-distance Remote Micro Imager (RMI) image using the Chemistry & Camera (ChemCam) aboard the rover on sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024 at 02:30:12 UTC. NASA/JPL-Caltech/LANL Earth planning date: Friday, Oct. 11, 2024
      This blogger is in the United Kingdom, just north of London, where we yesterday had beautiful night skies with a red aurora that was even visible with the unaided eye, and looked stunning on photographs. That reminded me of the solar storm that made it all the way to Mars earlier this year. Here is my colleague Deborah’s blog about it: “Aurora Watch on Mars.” And, of course, that was a great opportunity to do atmospheric science and prepare for future crewed missions, to assess radiation that future astronauts might encounter. You can read about it in the article, “NASA Watches Mars Light Up During Epic Solar Storm.” But now, back from shiny red night skies north of London, and auroras on Mars six months ago, to today’s planning!
      Power — always a negotiation! Today, I was the Science Operations Working Group chair, the one who has to watch for the more technical side of things, such as the question if all the activities will fit into the plan. Today there were many imaging ideas to capture the stunning landscape in detail with Mastcam and very close close-ups with the long-distance imaging capability of ChemCam (RMI). Overall, we have two long-distance RMIs in the plan to capture the details of the ridge we are investigating. You can see in the accompanying image an example from last sol of just how many stunning details we can see. I so want to go and pick up that smooth white-ish looking rock to find out if it is just the light that makes it so bright, or if the surface is different from the underside… but that’s just me, a mineralogist by training, used to wandering around a field site! Do you notice the different patterns — textures as we call them in geology — on the rocks to the left of that white-ish rock and the right of it? So much stunning detail, and we are getting two more RMI observations of 10 frames each in today’s plan! In addition there are more than 80 Mastcam frames planned. Lots of images to learn from!
      Chemistry is also featuring in the plan. The rover is stable on its wheels, which means we can get the arm out and do an APXS measurement on the target “Midnight Lake,” which MAHLI also images. The LIBS investigations are seconding the APXS investigation on Midnight Lake, and add another target to the plan, “Pyramidal Pinnacle.” On the third sol there is an AEGIS, the LIBS measurement where the rover picks its own target before we here on Earth even see where it is! Power was especially tight today, because the CheMin team does some housekeeping, in particular looking at empty cells in preparation for the next drill. The atmosphere team adds many investigations to look out for dust devils and the dustiness of the atmosphere, and APXS measures the argon content of the atmosphere. This is a measure for the seasonal changes of the atmosphere, as argon is an inert gas that does not react with other components of the atmosphere. It is only controlled by the temperature in various places of the planet — mainly the poles. DAN continues to monitor water in the subsurface, and RAD — prominently featured during the solar storm I was talking about earlier — continues to collect data on the radiation environment.
      Let’s close with a fun fact from planning today: During one of the meetings, the rover drivers were asked, “Are you driving backwards again?” … and the answer was yes! The reason: We need to make sure that in this rugged terrain, with its many interesting walls (interesting for the geologists!), the antenna can still see Earth when we want to send the plan. So the drive on sol 4332 is all backwards. I am glad we have hazard cameras on the front and the back of the vehicle!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Oct 13, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4329-4330: Continuing Downhill


      Article


      2 days ago
      3 min read Sols 4327-4328: On the Road Again


      Article


      4 days ago
      3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Kayla Barron looks at chile peppers growing in the Advanced Plant Habitat aboard the International Space Station. Determining the best ways to water plants in space resulted in the development of a new electrostatic spray nozzle, now licensed to industry.Credit: NASA Whether protecting crops from diseases and pests or sanitizing contaminated surfaces, the ability to spray protective chemicals over important resources is key to several industries. Electrostatic Spraying Systems Inc. (ESS) of Watkinsville, Georgia, manufactures electrostatic sprayers and equipment that make this possible. By licensing NASA electrostatic technology, originally made to water plants in space, ESS’s improved spray nozzles efficiently use basic laws of electricity to achieve complete coverage on targeted surfaces. 

      ESS traces its origins to research done at the University of Georgia in the 1970s and ’80s. An electrostatic sprayer works by inducing an electric charge onto atomized droplets. Much like an inflated balloon sticking to a wall when it’s gained a charge of static electricity, the droplets then stick to targeted surfaces.

      NASA’s interest in this technology originated with astronauts’ need for an easy way to support plant-growth experiments in space. On the International Space Station, watering plants without the help of gravity isn’t as easy as using a garden hose on Earth. In the future, using a system like an electrostatic sprayer on the space station or other orbiting destination could help the water droplets stick to the plants with uniform coverage. However, most spraying systems require large sources of water and air to properly aerosolize fluids.

      An ESS mister nozzle undergoes testing at Kennedy Space Center. The design was improved through collaboration between the company and NASA.Credit: NASA As both air and water are precious resources in space, NASA needed an easier way to make these incredibly small droplets. Charles Buhler and Jerry Wang of NASA’s Kennedy Space Center in Florida led the efforts to develop this capability, with Edward Law of the University of Georgia as a consulting expert. Eventually, the NASA team developed a new design by learning from existing technology called a mister nozzle. The benefit of a mister is that even though the interior volume of the nozzle is small, the pressure inside never builds up, which makes it perfect for enclosed small spaces like the space station.

      As the sprayer industry is a tight-knit group, technology transfer professionals at NASA reached out to the companies that could use a nozzle like this on Earth. Electrostatic Spraying Systems responded and later licensed the sprayer design from the agency and incorporated it into the company’s Maxcharge product lines.
      Read More Share
      Details
      Last Updated Oct 07, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read The Science of the Perfect Cup for Coffee 
      Material research is behind the design of a temperature-regulating mug
      Article 1 week ago 3 min read Measuring Moon Dust to Fight Air Pollution
      Article 3 weeks ago 2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Advanced Plant Habitat
      Conducting plant bioscience research aboard the International Space Station The Advanced Plant Habitat (APH) is the largest, fully automated plant…
      Climate Change
      Space Technology Mission Directorate
      View the full article
    • By NASA
      Bridget Moody stands at NASA’s Stennis Space Center where she is the technical lead for the NASA Stennis Environmental and Health Services Office. Along with supporting the NASA mission at NASA Stennis, Moody supports commercial companies by helping them determine environmental requirements and obtain required permits.NASA/Danny Nowlin Bridget Moody has the future in mind every day she works for NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      The future success of NASA’s Artemis campaign. The future success of commercial companies working at NASA Stennis. The future success of the Artemis Generation to follow.
      As technical lead for the NASA Stennis Environmental and Health Services Office, Moody’s job helps ensure work at America’s largest rocket propulsion test site is carried out with the best environmental stewardship in mind. 
      “This work is important because it helps preserve a legacy,” Moody said. “NASA has a mission, and it is also making sure we do that in the most environmentally sound manner possible. We all have the responsibility to protect and improve the environment.”
      The McNeill, Mississippi, resident supports NASA’s Artemis campaign by managing the NASA Stennis air permit, ensuring all federal and state requirements are met.
      The south Mississippi center is at the front end of the critical path for future space exploration by conducting hot fire testing for RS-25 engines that will help power NASA’s SLS (Space Launch System) rocket.
      NASA Stennis also is preparing to test the agency’s new exploration upper stage for future SLS flights. The newer upper stage will help NASA carry larger payloads on future Artemis missions to the Moon and beyond.
      Additionally, Moody’s knowledge of operations and environmental requirements benefits commercial companies working at NASA Stennis by helping them determine environmental requirements and obtain required permits in a timely manner.
      “We know what needs to be done and how to get it done, so we can really help facilitate and expedite those processes for them,” she said. 
      Moody, a native of Slidell, Louisiana, moved to Mississippi from Baton Rouge, Louisiana, in 2005. One year later, she started working as a contractor at NASA Stennis before being hired by NASA in 2016.
      The Southeastern Louisiana graduate received a NASA Early Career Achievement Medal in 2021. She was named a Space Hero by the agency that same year and received NASA’s prestigious Space Flight Awareness Silver Snoopy award, the astronaut’s award given to less than 1 percent of the total NASA workforce annually, in 2023.
      “NASA is one of the top federal agencies to work for,” Moody said. “Everybody knows about NASA, so it is amazing to be here, to contribute to our mission and be a part of that legacy. At NASA Stennis, we work as a team with everyone contributing to meet all challenges.  The work culture at NASA helps everybody realize that their contribution is important to our success, and all can have their voices heard.”
      As NASA continues its mission of exploring the unknown in air and space, innovating for the benefit of humanity, and inspiring the world through discovery, Moody will continue working to leave things better than she found it in hopes of inspiring the Artemis Generation to come.
      Learn more about the people who work at NASA Stennis View the full article
  • Check out these Videos

×
×
  • Create New...