Jump to content

Juice takes the heat


Recommended Posts

Juice_takes_the_heat_card_full.jpg Video: 00:04:00

ESA's Jupiter Icy moons Explorer, Juice, has successfully completed rigorous thermal tests simulating the extreme coldness of space and the warmth of the Sun at ESA’s test centre ESTEC, in The Netherlands.

The spacecraft underwent a month of round-the-clock testing and monitoring in the Large Space Simulator, which recreates the vacuum of space and is able to simulate both hot and cold space environments. The spacecraft was subjected to temperatures ranging from 250 degrees to minus 180 degrees Celsius, showing that it can survive its journey in space.

Juice will launch in 2022 to our Solar System’s largest planet. It will spend over four years studying Jupiter’s atmosphere, magnetosphere and its icy moons Europa, Callisto and Ganymede, investigating whether the moons’ subsurface oceans are habitable for life.

This film contains interviews with Pauline Ravily – Airbus Thermal Architect, Eduardo Bernar - European Test Services, ESA, and ESA's Juice Project Scientist, Olivier Witasse.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The HASP 1.0 (High-Altitude Student Platform) scientific balloon mission launched Sept. 4, 2024, during NASA’s fall balloon campaign in Fort Sumner, N.M.NASA/Erin Reed NASA’s Scientific Balloon Program’s fifth balloon mission of the 2024 fall campaign took flight Wednesday, Sept. 4, 2024, from the agency’s Columbia Scientific Balloon Facility in Fort Sumner, New Mexico. The HASP 1.0 (High-Altitude Student Platform) mission remained in flight over 11 hours before it safely touched down. Recovery is underway.
      HASP is a partnership among the Louisiana Space Grant Consortium, the Astrophysics Division of NASA’s Science Mission Directorate, and the agency’s Balloon Program Office and Columbia Scientific Balloon Facility. The HASP platform supports up to 12 student-built payloads and is designed to flight test compact satellites, prototypes, and other small experiments. Since 2006, HASP has engaged more than 1,600 undergraduate and graduate students involved in the missions.
      Teams participating in the 2024 HASP 1.0 flight included: University of North Florida and University of North Dakota; Arizona State University; Louisiana State University; University of Colorado Boulder; College of the Canyons; Fort Lewis College; Capitol Technical College; University of Arizona; Universidad Nacional de Ingeniería (Peru); and McMaster University (Canada).
      A new, larger version of the High-Altitude Student Platform (HASP 2.0) had its engineering test flight a few days prior. HASP 2.0 will be able to accommodate twice as many student experiments as HASP 1.0 once operational in the next year.
      The remaining three balloon flights scheduled for the 2024 Fort Sumner fall campaign await next launch opportunities. To follow the missions, visit NASA’s Columbia Scientific Balloon Facility website for real-time updates on balloons altitudes and GPS locations during flight.
      For more information on NASA’s Scientific Balloon Program, visit:
      https://www.nasa.gov/scientificballoons
      Share
      Details
      Last Updated Sep 06, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.gov Related Terms
      Learning Resources Scientific Balloons Wallops Flight Facility View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Data from one of the two CubeSats that comprise NASA’s PREFIRE mission was used to make this data visualization showing brightness temperature — the intensity of infrared emissions — over Greenland. Red represents more intense emissions; blue indicates lower intensities. The data was captured in July.
       NASA’s Scientific Visualization Studio The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.
      NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.
      One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.
      The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.
      “We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”
      Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.
      “It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”
      This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.
      The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.
      The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.
      More About PREFIRE
      The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.
      To learn more about PREFIRE, visit:
      https://science.nasa.gov/mission/prefire/
      5 Things to Know About NASA’s Tiny Twin Polar Satellites Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-116
      Share
      Details
      Last Updated Sep 03, 2024 Related Terms
      PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) Climate Change Earth Earth Science Polar Explore More
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
      Article 4 hours ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 5 days ago 7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:01:23 On 19–20 August 2024, Juice successfully completed a world-first lunar-Earth flyby, with flight controllers guiding the spacecraft first past the Moon, then past Earth. The gravity of the two changed Juice’s speed and direction, sending it on a shortcut to Jupiter via Venus.
      The closest approach to the Moon was at 23:15 CEST on 19 August, deflecting Juice towards a closest approach to Earth just over 24 hours later at 23:56 CEST on 20 August. In the hours before and after both close approaches, Juice’s two monitoring cameras captured photos, giving us a unique ‘Juice eye view’ of our home planet.
      Juice’s two monitoring cameras provide black-and-white snapshots in 1024 x 1024 pixel resolution (they can be processed in colour). Their main purpose is to monitor the spacecraft’s various booms and antennas, especially during the challenging period after launch. The photos they captured of the Moon and Earth during the lunar-Earth flyby are a bonus.
      The piece of music that accompanies the images is called 11,2 km/s. It was composed by Gautier Archer back in 2015, and selected as the official theme music for ESA’s Estrack ground station network to mark its 40th anniversary (more information). The music is available under a CC BY-NC-SA licence.
      Juice rerouted to Venus in world’s first lunar-Earth flyby
      Juice’s lunar-Earth flyby: all you need to know
      Processing notes: The Juice monitoring cameras provide 1024 x 1024 pixel images. Upscaling software was used to convert the images into 2160 x 2160 pixel images, which match the 3480 x 2160 pixel resolution of the 4K movie format.
      Access the related broadcast quality footage.
      View the full article
    • By European Space Agency
      Since ESA’s Jupiter Icy Moons Explorer (Juice) flew by the Moon and Earth earlier this week, we’ve seen images from its monitoring cameras and we’ve seen images from its navigation camera. Today we reveal the first images from its scientific camera, JANUS, designed to take detailed, high-resolution photos of Jupiter and its icy moons.
      View the full article
    • By European Space Agency
      ESA’s Jupiter Icy Moons Explorer (Juice) has successfully completed a world-first lunar-Earth flyby, using the gravity of Earth to send it Venus-bound, on a shortcut to Jupiter through the inner Solar System.
      View the full article
  • Check out these Videos

×
×
  • Create New...