Jump to content

Earth Seen From The ISS / (I believe I can Fly)


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: This Copernicus Sentinel-2 image from 13 November 2024 shows the Lewotobi Laki Laki volcano eruption on the island of Flores in southern Indonesia. View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:04:30 Explore the immense power of water as ESA’s Mars Express takes us on a flight over curving channels, streamlined islands and muddled ‘chaotic terrain’ on Mars, soaking up rover landing sites along the way.
      This beautiful flight around the Oxia Palus region of Mars covers a total area of approximately 890 000 km2, more than twice the size of Germany. Central to the tour is one of Mars’s largest outflow channels, Ares Vallis. It stretches for more than 1700 km2 and cascades down from the planet’s southern highlands to enter the lower-lying plains of Chryse Planitia.
      Billions of years ago, water surged through Ares Vallis, neighbouring Tiu Vallis, and numerous other smaller channels, creating many of the features observed in this region today.
      Enjoy the flight!
      After enjoying a spectacular global view of Mars we focus in on the area marked by the white rectangle. Our flight starts over the landing site of NASA’s Pathfinder mission, whose Sojourner rover explored the floodplains of Ares Vallis for 12 weeks in 1997. 
      Continuing to the south, we pass over two large craters named Masursky and Sagan. The partially eroded crater rim of Masursky in particular suggests that water once flowed through it, from nearby Tiu Vallis.
      The Masurky Crater is filled with jumbled blocks, and you can see many more as we turn north to Hydaspis Chaos. This ‘chaotic terrain’ is typical of regions influenced by massive outflow channels. Its distinctive muddled appearance is thought to arise when subsurface water is suddenly released from underground to the surface. The resulting loss of support from below causes the surface to slump and break into blocks of various sizes and shapes.
      Just beyond this chaotic array of blocks is Galilaei crater, which has a highly eroded rim and a gorge carved between the crater and neighbouring channel. It is likely that the crater once contained a lake, which flooded out into the surroundings. Continuing on, we see streamlined islands and terraced river banks, the teardrop-shaped island ‘tails’ pointing in the downstream direction of the water flow at the time.
      Crossing over Ares Vallis again, the flight brings us to the smoother terrain of Oxia Planum and the planned landing site for ESA’s ExoMars Rosalind Franklin rover. The primary goal of the mission is to search for signs of past or present life on Mars, and as such, this once water-flooded region is an ideal location.
      Zooming out, the flight ends with a stunning bird’s-eye view of Ares Vallis and its fascinating  water-enriched neighbourhood. 
      Disclaimer: This video is not representative of how Mars Express flies over the surface of Mars. See processing notes below.
      How the movie was made
      This film was created using the Mars Express High Resolution Stereo Camera Mars Chart (HMC30) data, an image mosaic made from single orbit observations of the High Resolution Stereo Camera (HRSC). The mosaic, centred at 12°N/330°E, is combined with topography information from the digital terrain model to generate a three-dimensional landscape. 
      For every second of the movie, 50 separate frames are rendered following a predefined camera path in the scene. A three-fold vertical exaggeration has been applied. Atmospheric effects such as clouds and haze have been added to conceal the limits of the terrain model. The haze starts building up at a distance of 300 km. 
      The HRSC camera on Mars Express is operated by the German Aerospace Center (DLR). The systematic processing of the camera data took place at the DLR Institute for Planetary Research in Berlin-Adlershof. The working group of Planetary Science and Remote Sensing at Freie Universität Berlin used the data to create the film.
      View the full article
    • By European Space Agency
      Image: These two images acquired by Copernicus Sentinel-2 highlight how the mission can help distinguish between clouds and snow. View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 9 min read
      The Earth Observer Editor’s Corner: Fall 2024
      On September 18, 2024, the National Oceanic and Atmospheric Administration (NOAA) shared the first images of the Western Hemisphere from the GOES-19 satellite, its newest geostationary satellite launched on June 25, 2024 onboard a Falcon Heavy rocket from NASA’s Kennedy Space Center. Previously known as GOES-U, the satellite was renamed GOES-19 upon reaching geostationary orbit on July 7, 2024. GOES-19 orbits about 35,785 km above the equator at the same speed the Earth rotates, allowing the satellite to constantly view the same area of the planet and track weather conditions and hazards as they happen. The satellite’s Advanced Baseline Imager (ABI) instrument recently captured stunning views of Earth in 16 spectral channels. This data provides researchers information about Earth’s atmosphere, land, and ocean for short-term forecasts and tracking severe weather – see Figure. ABI data is also used for detecting and monitoring environmental hazards, such as wildfires, smoke, dust storms, volcanic eruptions, turbulence, and fog. Data from multiple ABI channels can be combined to create imagery that approximates what the human eye would see from space referred to as GeoColor (see Figure).
      Figure. [Left] The GOES-19 images show the contiguous U.S. observed by each of the Advanced Baseline Imager’s (ABI) 16 channels on August 30, 2024, at 6:00 PM UTC. This 16-panel image [progressing left to right, across each row] shows the ABI’s two visible (gray scale), four near-infrared (IR) (gray scale), and 10 infrared channels (warmer brightness temperatures of the IR bands map to warmer colors). Each band’s appearance illustrates how it reflects or absorbs radiation. [Right] The GOES-19 full disk GeoColor image combines data from multiple ABI channels to approximate what the human eye would see from space.  Figure Credit: NOAA GOES-19 is the final satellite in NOAA’s GOES-R series and serves as a bridge to a new age of advanced satellite technology. NOAA and NASA are currently developing NOAA’s next generation geostationary satellites, called Geostationary Extended Observations (GeoXO), to advance operational geostationary Earth observations.
      NASA Earth sciences celebrated several satellite milestone anniversaries in 2024. The Global Precipitation Measurement (GPM) Core Observatory (CO) celebrated its 10th anniversary in February while Aura and Orbiting Carbon Observatory–2 (OCO–2) celebrated their 20th and 10th anniversaries, respectively, in July. Here, we focus on GPM and Aura.
      The GPM CO launched on February 27, 2024, aboard a Japanese H-IIA rocket from Tanegashima Space Center in southern Japan, as a joint Earth-observing mission between NASA and the Japan Aerospace Exploration Agency (JAXA). To celebrate its 10th anniversary, GPM has been hosting special outreach activities. One example is the GPM 10-in-10 webinar series that began on February 8, 2024. This series of 10 public webinars explores GPM and the story behind the mission, which is aimed at anyone interested in science, technology, engineering, mathematics, and the synergy of these disciplines to better understand and protect our home planet.
      Now over 10 years into the mission, GPM continues to provide important data on precipitation around the globe leading to new scientific discoveries and contributing data to help society, from monitoring storms to supporting weather forecasts and aiding water-borne disease public health alerts.
      As an example, GPM made several passes of Hurricane Milton, which made landfall near Siesta Key, FL on October 9, 2024 as a Category 3 storm. As a complement to GPM CO observations, a multi-satellite sensor IMERG animation shows rainfall rates and accumulation over the course of Milton’s history.
      To read more about how GPM continues to observe important precipitation characteristics and gain physical insights into precipitation processes, please see the article “GPM Celebrates Ten Years of Observing Precipitation for Science and Society” in The Earth Observer.
      The last of NASA’s three EOS Flagships – Aura – marked 20 years in orbit on July 15, 2024, with a celebration on September 18, 2024, at Goddard Space Flight Center’s (GSFC) Recreational Center. The 120 attendees – including about 40 participating virtually – reminisced about Aura’s (originally named EOS-CHEM) tumultuous beginning, from the instrument and Principal Investigator (PI) selections up until the delayed launch at Vandenberg Space Force Base (then Air Force Base) in California. They remembered how Bill Townsend, who was Deputy Director of GSFC at the time, and Ghassem Asrar, who was NASA’s Associate Administrator for Earth Science, spent many hours on site negotiating with the Vandenberg and Boeing launch teams in preparation for launch (after several delays and aborts). Photo 1 shows the Aura mission program scientist, project scientists (PS), and several instrument principal investigators (PI) at Vandenberg shortly before launch.
      Photo 1. The Aura (formerly EOS CHEM) mission program scientist, project scientists (PS), and several of instrument principal investigators (PI) at Vandenberg Space Force Base (then Air Force Base) shortly before launch on July 15, 2004. The individuals pictured [left to right] are Reinhold Beer [NASA/Jet Propulsion Laboratory (JPL)—Tropospheric Emission Spectrometer (TES) PI]; John Gille [University of Colorado, Boulder/National Center for Atmospheric Research (NCAR)—High Resolution Dynamics Limb Sounder (HIRDLS) PI]; Pieternel Levelt [Koninklijk Nederlands Meteorologisch Instituut (KNMI), Royal Netherlands Meteorological Institute—Ozone Monitoring Instrument (OMI) PI]; Ernest Hilsenrath [NASA’s Goddard Space Flight Center (GSFC)—Aura Deputy Scientist and U.S. OMI Co-PI]; Anne Douglass [GSFC—Aura Deputy PS]; Mark Schoeberl [GSFC—Aura Project Scientist];Joe Waters [NASA/JPL—Microwave Limb Sounder (MLS) PI]; P.K. Bhartia [GSFC—OMI Science Team Leader and former Aura Project Scientist]; and Phil DeCola [NASA Headquarters—Aura Program Scientist]. NOTE: Affiliations/titles listed for individuals named were those at the time of launch. Photo Credit: Ernest Hilsenrath At the anniversary event, Bryan Duncan [GSFC—Aura Project Scientist] gave formal opening remarks. Aura’s datasets have given a generation of scientists the most comprehensive global view of gases in Earth’s atmosphere to better understand the chemical and dynamic processes that shape their concentrations. Aura’s objective was to gather data to monitor Earth’s ozone layer, examine trends in global air pollutants, and measure the concentration of atmospheric constituents contributing to climate forcing. To read more about Aura’s incredible 20 years of accomplished air quality and climate science, see the anniversary article “Aura at 20 Years” in The Earth Observer.
      To read more about the anniversary event, see Summary of Aura 20th Anniversary Event.
      It has been over a year and a half since the Surface Water and Ocean Topography (SWOT) mission began collecting data on the height of nearly all water on Earth’s surface, including oceans, lakes, rivers, and reservoirs. During that time, data collected by the satellite has started to improve our understanding of energy in the ocean, yielding insights on surface currents and waves, internal tides, the vertical mixing of seawater, as well as atmosphere–ocean interactions. Notably, SWOT has been measuring the amplitude of solitary internal waves in the ocean. These waves reflect the dynamics of internal tides (tides that occur deep in the ocean rather than at the surface) that can influence biological productivity as well as ocean energy exchanges through their contribution to mixing and general oceanic circulation.
      SWOT measurements are also being used to study inland and coastal flooding to inform water management strategies. Earlier this year, researchers used SWOT data to measure the total volume of water during major floods in southern Brazil in April to improve understanding of these events and prepare for the future. In addition, the Water Ministry of Bangladesh is working to incorporate SWOT water elevation maps, along with other near-real time satellite data, into their flood forecasts. Researchers at Alexandria University, Egypt are using SWOT data in the Nile River Basin to improve dam operations. A detailed account of SWOT Significant Events since launch is available online. To learn more about project status and explore the many facets of operational and applied uses of SWOT data, please see The Earth Observer article, “Summary of the 10th SWOT Applications Workshop.”
      In September 2024, the Plankton, Aerosol, Cloud, ocean Ecosystem–Postlaunch Airborne eXperiment (PACE–PAX) gathered data for the validation of the PACE mission, which launched in February 2024.  The operations spanned Southern and Central California and nearby coastal regions, logging 81 flight hours for the NASA ER-2, which operated out of NASA’s Armstrong Flight Research Center (AFRC) in Edwards, CA, and 60 hours for Twin Otter aircraft, which was operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) at the Naval Postgraduate School (Monterey, CA) out of Marina Municipal Airport in Marina, CA – see Photo 2.  
      Photo 2. The Twin Otter aircraft operated out of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) during the Plankton, Aerosol, Cloud, ocean Ecosystem–Postlaunch Airborne eXperiment (PACE–PAX) campaign. The image shows the Twin Otter aircraft missing the approach at Marina Airport to check instrument performance on the aircraft against identical instrumentation on an airport control tower. Photo credit: ???TBD ??? Congratulations to PACE-PAX leads Kirk Knobelspiesse [GSFC], Brian Cairns [NASA Goddard Institute for Space Studies (GISS)], and Ivona Cetinić [GSFC/Morgan State University] for successfully executing and planning this campaign. PACE–PAX data will be available in March 2025 via NASA’s Langley Research Center Suborbital Science Data for Atmospheric Composition website and NASA’s SeaWiFS Bio-optical Archive and Storage System (SeaBASS).
      Photo 3. Clockwise from top left: Mike Ondrusek (NOAA), mission scientist of the R/V Shearwater, waves to the Naval Postgraduate School (NPS) Twin Otter as it samples at low altitude. Bridge fire in San Gabriel mountains, September 10, 2024. Photo by NASA ER-2 pilot Kirt Stallings. Carl Goodwin (JPL) performs calibration reference measurements at Ivanpah Playa, California. Scott Freeman (GSFC) and Harrison Smith (GSFC) deploy instrumentation from the R/V Shearwater in the Santa Barbara Channel. Instrument integration on the NASA ER-2 in preparation for PACE-PAX. San Francisco observed by the NPS Twin Otter as it samples at low altitude over the San Francisco Bay. The R/V Shearwater seen from the NPS Twin Otter. Photo credit: ???TBD ??? Shifting venues, NASA’s BlueFlux Campaign conducted a series of ground-based and airborne fieldwork missions out of the Miami Homestead Air Reserve Base and the Miami Executive Airport in Miami-Dade County, which are adjacent to the eastern border of the Everglades National Park. The full study region – broadly referred to as South Florida – is narrowly defined by the wetland ecosystems that extend from Lake Okeechobee and its Northern estuaries to the saltwater marshland and mangrove forests along the state’s southernmost shore. 
      Glenn Wolfe [GSFC] and Erin Delaria [GSFC/UMD] organized more than 34 flights across 5 separate fieldwork deployments during the campaign. The data during BlueFlux are intended to contribute to a more robust understanding of how Florida’s coastal ecology fits into the carbon cycle.  The article, “NASA’s BlueFlux Campaign Supports Blue Carbon Management in South Florida,” provides additional information about this program, which was made possible by David Lagomasino [East Carolina University], Cheryl Doughty [GSFC/UMD], Lola Fatoyinbo [GSFC], and Peter Raymond [Yale University].  
      To learn more about PACE-PAX and BlueFlux, see: Updates on NASA Field Campaigns.
      Notable recent Science Support Office (SSO) outreach activities include the 2024 Eclipse outreach and engagement efforts on April 7, 2024, in Kerrville, TX and Cleveland, OH. The two locations are among a dozen that NASA set up along path of totality. To read about the 2024 Total Solar Eclipse through the eyes of NASA outreach and engagement activities, please see The Earth Observer feature article, “Looking Back on Looking Up: The 2024 Total Solar Eclipse.”
      The SSO also supported the United Nations (UN) Summit of the Future event and the 79th General Assembly High Level week, September 19–27, 2024 at UN Headquarters (HQ) in New York City, NY. SSO supported the NASA Sea Level Change Team (N-SLCT) during the High-level Meeting on Sea-Level Rise by having Hyperwall content available for the release of the new Pacific Flooding Analysis Tool. NASA Administrator Bill Nelson visited the Hyperwall on September 23 with Aarti Holla-Maini [UN Office for Outer Space Affairs (UNOOSA)—Director]. Karen St. Germain [NASA HQ—Director of the Earth Science Division], Julie Robinson [NASA HQ—Deputy Director of the Earth Science Division], Kate Calvin [NASA HQ—NASA Chief Scientist], Lesley Ott [GSFC— Climate Scientist], and Anjali Tripathi [NASA/Jet Propulsion Laboratory (JPL)—Astrophysicist] talked with delegates and members about NASA Science and accessed NASA global datasets. Photos from the event are available at the SSO Flickr Page.
      Looking ahead, the SSO is once again leading the planning and logistics for the NASA exhibit at the American Geophysical Union (AGU) Fall Meeting, which will be held December 9–13, 2024 in Washington, DC. Nearly 40 NASA projects and missions will have hands-on activities within the perimeter of the NASA Science exhibit, from the James Webb Space Telescope to the Airborne Science Fleet. The NASA Hyperwall, a video wall used for visual-forward science storytelling, will host approximately 50 Hyperwall stories and presentations throughout the meeting, including presentations delivered by the 2024 winners of the NASA-funded AGU Michael H. Freilich Student Visualization Competition. The exhibit will also feature roughly 40 tech demonstrations throughout the week, covering a wide range of hands-on introductions to everything from the capabilities of the OpenSpace data visualization software to the scientific applications of augmented reality. Please be sure to stop by the NASA exhibit when you are at AGU.
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Nov 14, 2024 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...