Jump to content

Apollo 15: "Never Been on a Ride like this Before"


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By NASA
      NASA’s Advanced Composite Solar Sail System is seen orbiting Earth in this 13-second exposure photograph, Monday, Sept. 2, 2024, from Arlington, Virginia. The mission team confirmed the spacecraft’s unique composite boom system unfurled its reflective sail on Thursday, Aug. 29, 2024, accomplishing a critical milestone in the agency’s demonstration of next-generation solar sail technology that will allow small spacecraft to “sail on sunlight.” Just as a sailboat is powered by wind in a sail, a spacecraft can use the pressure of sunlight on a solar sail for propulsion. This technology demonstration serves as a pathfinder for future missions powered by solar sail technology.NASA/Bill Ingalls Now that its reflective sail has deployed fully open in orbit, the Advanced Composite Solar Sail System can be seen in the night sky from many locations across the world!
      Stargazers can join NASA’s #SpotTheSail campaign by using the NASA app on mobile platforms to find out when the spacecraft will be visible at their location. The app, which is free to use and available on iOS and Android, provides a location-specific schedule of upcoming sighting opportunities. A built-in augmented reality tool points users to the location of the spacecraft in real time.
      Can you spot the solar sail? Share your viewing experience online using the hashtag #SpotTheSail for a chance to be featured on NASA’s website and social media channels.
      Here’s how to use the sighting prediction tool: 
      Install and open the NASA app on an iOS or Android device. Tap on the “Featured” tab on the bottom navigation bar. Tap on the Advanced Composite Solar Sail System mission from the Featured Missions at the top of the screen. Tap on the “Sightings” tab on the bottom navigation bar. A list of all the upcoming sightings for your location will be displayed. If you are using an iOS device, you can tap on the “Sky View” link for an augmented reality guide to help you locate the spacecraft’s real-time location during the visible pass. NASA’s Advanced Composite Solar Sail System is testing new technologies in low Earth orbit, including a composite boom system that supports a four-piece sail. Not to be confused with solar panels, solar sails allow small spacecraft to “sail on sunlight,” eliminating the need for rocket fuel or other conventional propellants. This propulsion technology can enable low-cost deep space missions to increase access to space.  
      For ongoing mission updates, follow us on social media:
      X: @NASAAmes, @NASA
      Facebook: NASA Ames, NASA
      Instagram: @NASAAmes, @NASA

      NASA’s Ames Research Center in California’s Silicon Valley manages the Advanced Composite Solar Sail System project and designed and built the onboard camera diagnostic system. NASA’s Langley Research Center in Hampton, Virginia, designed and built the deployable composite booms and solar sail system. NASA’s Small Spacecraft Technology program office based at NASA Ames and led by the agency’s Space Technology Mission Directorate (STMD) in Washington, funds and manages the mission. NASA STMD’s Game Changing Development program developed the deployable composite boom technology. Rocket Lab USA, Inc of Long Beach, California, provided launch services. NanoAvionics provided the spacecraft bus.
      View the full article
    • By European Space Agency
      ESA's Prospect package, including drill and a miniaturised laboratory, will fly to the Moon’s South Polar region in search of volatiles, including water ice, as part of NASA’s Commercial Lunar Payload Services initiative.
      View the full article
    • By NASA
      On Aug. 10, 1969, Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin completed their 21-day quarantine after returning from the Moon. The historic nature of their mission resulted in a very busy postflight schedule for Armstrong, Collins, and Aldrin, starting with celebrations in New York, Chicago, Los Angeles, and Houston. Scientists continued to examine the lunar samples the Apollo 11 astronauts returned from the Sea of Tranquility. NASA set its sights on additional lunar landing missions, announcing plans for a pinpoint landing by Apollo 12 in November 1969 that also included visiting the robotic Surveyor 3 that landed on the Moon in 1967. The agency announced the crews for the Apollo 13 and 14 missions planned for 1970. Including prime and backup crews, NASA had 18 astronauts training for lunar landing missions. Support astronauts brought that number to 32.
      Apollo 11
      Following their return from the Moon, Armstrong, Collins, and Aldrin completed their 21-day quarantine in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. During their stay in the LRL, they worked on their pilot reports, conducted postflight debriefs including with the Apollo 12 crew, and Armstrong celebrated his 39th birthday. On the evening of Aug. 10, they left the relative quiet of the LRL for a very hectic next few months. After spending a day reuniting with their families, the three reported back to their offices and held their postflight press conference on Aug. 12. The next day, they flew first to New York for a massive ticker tape parade, then on to Chicago for another big parade, ending the day in Los Angeles with a state dinner hosted by President Richard M. Nixon and attended by most active astronauts, members of Congress, 44 state governors, and 83 foreign ambassadors. They returned to Houston for a welcome home parade on Aug. 16, ending the day with a barbecue party and a tribute to the entire NASA team in the Astrodome, emceed by Frank Sinatra. Meanwhile, on Aug. 14, engineers shipped the Command Module Columbia to its manufacturer, the North American Rockwell plant in Downey, California, for postflight inspections. Scientists in the LRL eagerly continued their examinations of the 48 pounds of lunar material the Apollo 11 astronauts returned from the Sea of Tranquility.

      Left: In the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Apollo 11 astronauts Neil A. Armstrong, left, Michael Collins, and Edwin E. “Buzz” Aldrin line up for food in the LRL’s dining area. Middle: Buzz, left, Mike, and Neil enjoy a meal together in the LRL’s dining room. Right: Neil celebrates his 39th birthday in the LRL.

      Left: NASA engineer John K. Hirasaki opens the hatch to the Apollo 11 Command Module Columbia for the first time in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Mike Collins sits in Columbia’s hatch in the LRL. Right: While still aboard the U.S.S. Hornet, Mike wrote this inscription inside Columbia.
      Collins’ inscription inside Columbia, first written while aboard the U.S.S. Hornet, and retraced in the LRL:
      Spacecraft 107, alias Apollo 11, alias “Columbia”
      The Best Ship to Come Down the Line
      God Bless Her.
      Michael Collins CMP

      Aug. 5, 1969. In the Lunar Receiving Laboratory, scientists open the second Apollo 11 Lunar Sample Return Container and begin to examine the rock and soil samples.

      Left: On Aug. 10, 1969, Buzz, left, Mike, and Neil exit the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, ending their 21-day quarantine. Middle: Morning of Aug. 12, Neil reports to work at his office in MSC’s Building 4. Right: Afternoon of Aug. 12, Buzz, left, Neil, and Mike meet the press in MSC’s auditorium.
      Armstrong’s comments to open the press conference:
      “It was our pleasure to participate in one great adventure. It’s an adventure that took place, not just in the month of July, but rather one that took place in the last decade. We … had the opportunity to share that adventure over its developing and unfolding in the past months and years. It’s our privilege today to share with you some of the details of that final month of July that was certainly the highlight, for the three of us, of that decade.”

      Aug. 13, 1969. Left: An estimated four million people attend the ticker tape parade in New York City for the Apollo 11 astronauts. Middle: The ticker tape parade in Chicago drew two million people. Right: The Apollo 11 astronauts and their wives at the official state dinner in Los Angeles, hosted by President Richard M. Nixon.

      Left: Aug. 14, 1969. NASA Administrator Thomas O. Paine, left, accompanies Buzz, Mike, and Neil on the plane back to Houston. Middle: Aug. 16. Ticker tape parade in downtown Houston attended by 250,000 people. Right: Aug. 16. Buzz, left, Neil, and Mike with emcee Frank Sinatra during the barbecue party in the Houston Astrodome.

      Left: On Aug. 14, at Houston’s Ellington Air Force Base, workers load the Apollo 11 Command Module Columbia into a Super Guppy for transport to the North American Rockwell plant in Downey, California. Middle: Workers in Downey inspect Columbia on Aug. 19. Right: Workers prepare to place Columbia in a chamber to bakeout any residual moisture to ready it for public display.

      Apollo 11 science experiments. Left: Neil rolled up the Solar Wind Composition experiment at the end of the spacewalk and placed it inside the Apollo Lunar Sample Return Container that arrived in the Lunar Receiving Laboratory on July 26, 1969. Middle: Astronomers sent the first successful beam to the Laser Ranging Retroreflector on Aug. 1, 1969, and it remains available for use to this day. Right: The Passive Seismic Experiment returned useful data for three weeks but stopped responding to commands on Aug. 24, 1969, most likely due to overheating in the lunar Sun.
      Apollo 12
      At the time Apollo 11 returned from its historic journey, NASA had plans for nine more Apollo Moon landing missions. On July 29, Apollo Program Director Samuel C. Phillips at NASA Headquarters in Washington, D.C., announced the launch date, Nov. 14, 1969, and the landing site, in the Ocean of Storms, for Apollo 12. The main goals of this second lunar landing included a precision touchdown near the Surveyor 3 spacecraft that landed there in April 1967, and an expanded science program conducted during two spacewalks, including the deployment of the first Apollo Lunar Surface Experiment Package (ALSEP), a suite of science instruments. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, Command Module Pilot (CMP) Richard F. Gordon, and Lunar Module Pilot (LMP) Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin, began training after their assignment in April. In addition to rehearsing aspects of their flight in mission simulators, they practiced for the descent and precision landing, for the two spacewalks planned during their 31.5-hour lunar surface stay, including visiting and examining Surveyor 3, and for the expanded geology exploration. The latter included a three-day geology field trip to Hawaii with simulated lunar traverses. At NASA’s Jet Propulsion Laboratory in Pasadena, California, the astronauts received a detailed briefing on the Surveyor spacecraft. At NASA’s Kennedy Space Center (KSC) in Florida, workers had already assembled their Saturn V rocket, with rollout to Launch Pad 39A planned for early September. The U.S. Navy chose the U.S.S. Hornet (CVS-12), the carrier that successfully recovered Apollo 11, to reprise its role as prime recovery ship for Apollo 12.

      Left: Lunar front side showing the landing sites for Apollo 11 and 12. Right: Surveyor 3 took this panorama of its landing site in April 1967, also the targeted site for Apollo 12.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, and Alan L. Bean at the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia. Middle left: Apollo 12 backup astronaut David R. Scott at the LLRF. Middle right: Conrad, left, and Bean during the Aug. 9-11 geology field trip to Hawaii. Right: Conrad practices opening an Apollo Lunar Sample Return Container during simulated one-sixth gravity aboard a KC-135 aircraft.
      Apollo 13 and 14
      On Aug. 6, 1969, NASA announced the crews for Apollo 13 and 14, the third and fourth Moon landing missions. At the time of the announcement, Apollo 13 had a planned launch date in March 1970 and a proposed landing site at the Fra Mauro region in the lunar highlands, the first landing site not in the relatively flat lunar maria. Apollo 14 aimed for a July 1970 mission with the Crater Censorinus area in the lunar highlands to the southeast of the Sea of Tranquility as a tentative landing site. Plans for both missions called for two lunar surface excursions totaling about six hours with a lunar stay duration of 35 hours. As on Apollo 12, the crews planned to deploy an ALSEP suite of science instruments, in addition to conducting the geology field work of documenting and collecting rock and soil samples for return to scientists on Earth for analysis. 

      The Apollo 13 crew of James A. Lovell, left, Thomas K. “Ken” Mattingly, and Fred W. Haise.
      The prime crew for Apollo 13 consisted of Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise. Lovell would make his fourth space mission aboard Apollo 13, having flown on Gemini VII and XII as well as orbiting the Moon during Apollo 8 – making him the first person to travel to the Moon twice. Neither Mattingly nor Haise had flown in space before, although Haise had served with Lovell on the Apollo 11 backup crew. The Apollo 13 backup crew consisted of John W. Young, John L. Swigert, and Charles M. Duke. Young had flown three previous missions, Gemini 3 and X and more recently aboard Apollo 10, the Moon landing dress rehearsal flight. Swigert and Duke had no spaceflight experience, although Duke served as capsule communicator during Apollo 10 as well as during the Apollo 11 Moon landing.

      Left: The Saturn V for Apollo 13 rolls out of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida to relocate it from High Bay 2 to High Bay 1. Right: The Apollo 13 Saturn V rolls back in to High Bay 1 of the VAB.
      Flight hardware for Apollo 13 had already arrived at KSC. Workers in the Vehicle Assembly Building (VAB) completed stacking of the three Saturn V rocket stages in High Bay 2 on July 31. They added a boilerplate Apollo spacecraft to the top of the rocket, and in a roll-around maneuver on Aug. 8, the stack left the VAB, crawled to the other side of the building, and rolled back inside to High Bay 1. North American Rockwell delivered the Command and Service Modules to KSC on June 26, where workers in the Manned Spacecraft Operations Building (MSOB) mated the two modules four days later in preparation for preflight testing in altitude chambers. The Lunar Module (LM) ascent and descent stages arrived at KSC on June 27 and 28, respectively, from their manufacturer, the Grumman Aircraft Corporation in Bethpage, New York. Following a docking test between the CM and LM, workers in the MSOB mated the two stages of the LM on July 15.

      The Apollo 14 crew of Alan B. Shepard, left, Stuart A. Roosa, and Edgar D. Mitchell.
      NASA designated Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell as the prime crew for Apollo 14. Shepard, the first American in space when he launched aboard his Freedom 7 spacecraft in May 1961, recently returned to flight status after a surgical intervention cured his Ménière’s disease, an inner ear disorder. Neither Roosa nor Mitchell had spaceflight experience. The backup crew consisted of Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle. Cernan had flown in space twice before, on Gemini IX and more recently on Apollo 10. Evans and Engle had not flown in space before, although Engle earned astronaut wings as a pilot with the U.S. Air Force flying the X-15 rocket plane above the 50-mile altitude required to qualify as an astronaut on three of his 16 flights.

      Left: Apollo 14 astronauts Alan B. Shepard, center, and Edgar D. Mitchell, in baseball cap, during the Idaho geology field trip. Right: Apollo 14 backup crew members Eugene A. Cernan, left, and Joe H. Engle during the Idaho geology field trip.
      The Apollo 14 astronauts jumped right into their geology training. On Aug. 14, Shepard, Mitchell, and Engle spent the day at the United States Geological Service’s (USGS) Crater Field near Flagstaff, Arizona, including getting a geologist’s lecture on the mechanisms of crater formation. On Aug. 22 and 23, Cernan joined them on a geology field trip to Idaho, where they visited Craters of the Moon National Monument, Butte Crater lava tubes, Ammon pumice quarries, and the Wapi volcanic fields. Geologists chose these sites for training because at the time Apollo 14 planned to visit a presumed volcanic area on the Moon.
      NASA management changes

      Left: Samuel C. Phillips, Apollo Program Director at NASA Headquarters in Washington, D.C., during the Apollo 11 launch in the Launch Control Center at NASA’s Kennedy Space Center (KSC) in Florida. Middle left: Rocco A. Petrone, director of launch operations at KSC, seen here at the Apollo 11 rollout, succeeded Phillips. Middle right: George S. Trimble, left, deputy director of the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, with MSC Director Robert R. Gilruth in 1967. Right: Christopher C. Kraft, director of flight operations at MSC, seen here in Mission Control following the Apollo 11 splashdown, succeeded Trimble.
      Several changes in senior NASA leadership took place following Apollo 11. At NASA Headquarters in Washington, D.C., Phillips retired as Apollo Program Director, having served in that position since 1964, and returned to the U.S. Air Force. Rocco A. Petrone, director of launch operations at KSC since 1966, succeeded him. George S. Trimble announced his retirement as MSC deputy director effective Sept. 30, having served in that role since October 1967. In November 1969, MSC Director Robert R. Gilruth named Christopher C. Kraft to succeed Trimble as his deputy.
      To be continued …
      News from around the world in August 1969:
      August 2 – President Nixon the first sitting U.S. president to visit a communist capital when he meets with Romanian President Nicolai Ceausescu in Bucharest.
      August 5 – Mariner 7 returns close-up images during its fly-by of Mars.
      August 14 – NASA accepts seven pilots from the U.S. Air Force’s canceled Manned Orbiting Laboratory as its Group 7 astronauts.
      August 15-18 – Three-day Woodstock music festival in Bethel, New York, draws nearly half a million attendees.
      August 21 – The first GAP store opens in San Francisco.
      Explore More
      7 min read 55 Years Ago: NASA Group 7 Astronaut Selection
      Article 6 days ago 5 min read Celebrating NASA’s Coast Guard Astronauts on Coast Guard Day
      Article 3 weeks ago 20 min read MESSENGER – From Setbacks to Success
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...