Jump to content

The Shuttle's Last Flight | An End. A New Beginning.


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGS Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.
      We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.
      The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
      Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.
      The NISAR mission will measure the motion of Earth’s surface — data that can be used to  monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies Beneath
      Targeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.
      The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.
      “The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.
      Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.
      “From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”
      Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.
      Finding Normal
      When it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.
      The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.
      “There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”
      More About NISAR
      The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-155
      Share
      Details
      Last Updated Nov 08, 2024 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
      2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
      Article 22 hours ago 3 min read Integrating Relevant Science Investigations into Migrant Children Education
      For three weeks in August, over 100 migrant children (ages 3-15) got to engage in…
      Article 2 days ago 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By SpaceX
      Starship | Fifth Flight Test
    • By NASA
      A new edition of Issue #4 of Astrobiology: The Story of our Search for Life in the Universe has been released to include the NASA Europa Clipper mission. NASA Astrobiology/Aaron Gronstal To celebrate the successful launch of NASA’s Europa Clipper mission, the agency’s Astrobiology program has released a new edition of Issue #4 – Missions to the Outer Solar System – of its graphic history series Astrobiology: The Story of our Search for Life in the Universe.
      Issue #4 tells the story of the outer solar system, from beyond the asteroid belt to the outer reaches of the Sun’s magnetic influence. Gas giants like Jupiter and Saturn are not habitable, but many of their moons raise questions about life’s potential far, far away from the warmth of the Sun.
      One such body is Jupiter’s moon Europa, which contains an ocean of liquid water beneath its icy surface. The Europa Clipper mission is designed to help scientists understand whether this ocean holds key ingredients that could support habitable environments for life as we know it. The spacecraft launched on Oct. 14 and will arrive at Jupiter in 2030.
      Additional content in the fourth edition of Issue #4 also includes ESA’s (European Space Agency) Juice (Jupiter Icy Moons Explorer) mission, which will arrive in the Jovian system in 2031 and collect data on many of Jupiter’s moons, including Ganymede, Europa, Callisto, and Io, that is complementary to Europa Clipper’s investigation.
      Read more about how astrobiologists study the potential for life on worlds like Europa and the exciting data that Europa Clipper will gather by visiting NASA’s Astrobiology website and downloading the new edition.
      Digital wallpaper for phones, desktops, or meeting backgrounds that feature the new Europa Clipper artwork from Issue #4 are also available.
      This wallpaper image featuring NASA’s Europa Clipper mission uses artwork from Issue #4 of the astrobiology graphic history series, Astrobiology: The Story of our Search for Life in the Universe. The image of Jupiter in the background is adapted from imagery taken by NASA’s Juno Mission (Exotic Marble, 2019, NASA/JPL-Caltech/SwRI/MSSS/Prateek Sarpal/©CCNCSA) NASA Astrobiology/Aaron Gronstal For more information on NASA’s Astrobiology program, visit:
      https://science.nasa.gov/astrobiology
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 
      Share








      Details
      Last Updated Nov 01, 2024 Related Terms
      Astrobiology Explore More
      5 min read NASA: New Insights into How Mars Became Uninhabitable


      Article


      4 weeks ago
      14 min read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece


      Article


      2 months ago
      5 min read NASA Scientists on Why We Might Not Spot Solar Panel Technosignatures


      Article


      3 months ago
      View the full article
    • By NASA
      NASA NASA pilot Joe Walker sits in the pilot’s platform of the Lunar Landing Research Vehicle (LLRV) number 1 on Oct. 30, 1964. The LLRV and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the Moon’s surface.
      The LLRVs, humorously referred to as flying bedsteads, were used by NASA’s Flight Research Center, now NASA’s Armstrong Flight Research Center in California, to study and analyze piloting techniques needed to fly and land the Apollo lunar module in the moon’s airless environment.
      Learn more about the LLRV’s first flight.
      Image credit: NASA
      View the full article
    • By NASA
      President John F. Kennedy’s national commitment to land a man on the Moon and return him safely to the Earth before the end of the decade posed multiple challenges, among them how to train astronauts to land on the Moon, a place with no atmosphere and one-sixth the gravity on Earth. The Lunar Landing Research Vehicle (LLRV) and its successor the Lunar Landing Training Vehicle (LLTV) provided the training tool to simulate the final 200 feet of the descent to the lunar surface. The ungainly aircraft made its first flight on Oct. 30, 1964, at NASA’s Flight Research Center (FRC), now NASA’s Armstrong Flight Research Center (AFRC) in California. The Apollo astronauts who completed landings on the Moon attributed their successes largely to training in these vehicles.

      The first Lunar Landing Research Vehicle silhouetted against the rising sun on the dry lakebed at Edwards Air Force Base in California’s Mojave Desert.
      In December 1961, NASA Headquarters in Washington, D.C., received an unsolicited proposal from Bell Aerosystems in Buffalo, New York, for a design of a flying simulator to train astronauts on landing a spacecraft on the Moon. Bell’s approach, using their design merged with concepts developed at NASA’s FRC, won approval and the space agency funded the design and construction of two Lunar Landing Research Vehicles (LLRV). At the time of the proposal, NASA had not yet chosen the method for getting to and landing on the Moon, but once NASA decided on Lunar Orbit Rendezvous in July 1962, the Lunar Module’s (LM) flying characteristics matched Bell’s proposed design closely enough that the LLRV served as an excellent trainer. 

      Two views of the first Lunar Landing Research Vehicle shortly after its arrival and prior to assembly at the Flight Research Center, now NASA’s Armstrong Flight Research Center, in California.
      Bell Aerosystems delivered the LLRV-1 to FRC on April 8, 1964, where it made history as the first pure fly-by-wire aircraft to fly in Earth’s atmosphere. Its design relied exclusively on an interface with three analog computers to convert the pilot’s movements to signals transmitted by wire and to execute his commands. The open-framed LLRV used a downward pointing turbofan engine to counteract five-sixths of the vehicle’s weight to simulate lunar gravity, two rockets provided thrust for the descent and horizontal translation, and 16 LM-like thrusters provided three-axis attitude control. The astronauts could thus simulate maneuvering and landing on the lunar surface while still on Earth. The LLRV pilot could use an aircraft-style ejection seat to escape from the vehicle in case of loss of control.

      Left: The Lunar Landing Research Vehicle-1 (LLRV-1) during an engine test at NASA’s Flight Research Center (FRC), now NASA’s Armstrong Fight Research Center, in California’s Mojave Desert. Right: NASA chief test pilot Joseph “Joe” A. Walker, left, demonstrates the features of LLRV-1 to President Lyndon B. Johnson during his visit to FRC.
      Engineers conducted numerous tests to prepare the LLRV for its first flight. During one of the engine tests, the thrust generated was higher than anticipated, lifting crew chief Raymond White and the LLRV about a foot off the ground before White could shut off the engines. On June 19, during an official visit to FRC, President Lyndon B. Johnson inspected the LLRV featured on a static display. The Secret Service would not allow the President to sit in the LLRV’s cockpit out of an overabundance of caution since the pyrotechnics were installed, but not yet armed, in the ejection seat. Following a Preflight Readiness Review held Aug. 13 and 14, managers cleared the LLRV for its first flight.

      Left: NASA chief test pilot Joseph “Joe” A. Walker during the first flight of the Lunar Landing Research Vehicle (LLRV). Right: Walker shortly after the first LLRV flight.
      In the early morning of Oct. 30, 1964, FRC chief pilot Joseph “Joe” A. Walker arrived at Edwards Air Force Base’s (AFB) South Base to attempt the first flight of the LLRV. Walker, a winner of both the Collier Trophy and the Harmon International Trophy, had flown nearly all experimental aircraft at Edwards including 25 flights in the X-15 rocket plane. On two of his X-15 flights, Walker earned astronaut wings by flying higher than 62 miles, the unofficial boundary between the Earth’s atmosphere and space. After strapping into the LLRV’s ejection seat, Walker ran through the preflight checklist before advancing the throttle to begin the first flight. The vehicle rose 10 feet in the air, Walker performed a few small maneuvers and then made a soft landing after having flown for 56 seconds. He lifted off again, performed some more maneuvers, and landed again after another 56 seconds. On his third flight, the vehicle’s electronics shifted into backup mode and he landed the craft after only 29 seconds. Walker seemed satisfied with how the LLRV handled on its first flights.

      Left: Lunar Landing Research Vehicle-2 (LLRV-2) during one of its six flights at the Flight Research Center, now NASA’s Armstrong Flight Research Center, in California in January 1967. Right: NASA astronaut Neil A. Armstrong with LLRV-1 at Ellington Air Force Base in March 1967.
      Walker took LLRV-1 aloft again on Nov. 16 and eventually completed 35 test flights with the vehicle. Test pilots Donald “Don” L. Mallick, who completed the first simulated lunar landing profile flight during the LLRV’s 35th flight on Sept. 8, 1965, and Emil E. “Jack” Kluever, who made his first flight on Dec. 13, 1965, joined Walker to test the unique aircraft. Joseph S. “Joe” Algranti and Harold E. “Bud” Ream, pilots at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center (JSC) in Houston, travelled to FRC to begin training flights with the LLRV in August 1966. Workers at FRC assembled the second vehicle, LLRV-2, during the latter half of 1966. In December 1966, after 198 flights workers transferred LLRV-1 to Ellington AFB near MSC for the convenience of astronaut training, and LLRV-2 followed in January 1967 after completing six test flights at FRC. The second LLRV made no further flights, partly because the three Lunar Landing Training Vehicles (LLTVs), more advanced models that better simulated the LM’s flying characteristics, began to arrive at Ellington in October 1967. Neil A. Armstrong completed the first astronaut flights aboard LLRV-1 on Mar. 23, 1967, and flew 21 flights before ejecting from the vehicle on May 6, 1968, seconds before it crashed. He later completed his lunar landing certification flights using LLTV-2 in June 1969, one month before peforming the actual feat on the Moon.

      Left: Apollo 11 Commander Neil A. Armstrong prepares to fly a lunar landing profile in Lunar Landing Training Vehicle-2 (LLTV-2) in June 1969. Middle: Apollo 12 Commander Charles “Pete” Conrad prepares to fly LLTV-2 in July 1969. Right: Apollo 14 Commander Alan B. Shepard flies LLTV-3 in December 1970.
      All Apollo Moon landing mission commanders and their backups completed their lunar landing certifications using the LLTV, and all the commanders attributed their successful landings to having trained in the LLTV. Apollo 8 astronaut William A. Anders, who along with Armstrong completed some of the early LLRV test flights, called the training vehicle “a much unsung hero of the Apollo program.” During the flight readiness review in January 1970 to clear LLTV-3 for astronaut flights, Apollo 11 Commander Armstrong and Apollo 12 Commander Charles “Pete” Conrad, who had by then each completed manual landings on the Moon, spoke positively of the LLTV’s role in their training. Armstrong’s overall impression of the LLTV: “All the pilots … thought it was an extremely important part of their preparation for the lunar landing attempt,” adding “It was a contrary machine, and a risky machine, but a very useful one.” Conrad emphasized that were he “to go back to the Moon again on another flight, I personally would want to fly the LLTV again as close to flight time as possible.” During the Apollo 12 technical debriefs, Conrad stated the “the LLTV is an excellent training vehicle for the final phases. I think it’s almost essential. I feel it really gave me the confidence that I needed.” During the postflight debriefs, Apollo 14 Commander Alan B. Shepard stated that he “did feel that the LLTV contributed to my overall ability to fly the LM during the landing.”

      Left: Apollo 15 Commander David R. Scott flies Lunar Landing Training Vehicle-3 (LLTV-3) in June 1971. Middle: Apollo 16 Commander John W. Young prepares to fly LLTV-3 in March 1972. Right: Apollo 17 Commander Eugene A. Cernan prepares for a flight aboard LLTV-3 in October 1972.
      David R. Scott, Apollo 15 commander, stated in the final mission report that “the combination of visual simulations and LLTV flying provided excellent training for the actual lunar landing. Comfort and confidence existed throughout this phase.” In the Apollo 15 postflight debrief, Scott stated that he “felt very comfortable flying the vehicle (LM) manually, because of the training in the LLTV, and there was no question in my mind that I could put it down where I wanted to. I guess I can’t say enough about that training. I think the LLTV is an excellent simulation of the vehicle.” Apollo 16 Commander John W. Young offered perhaps the greatest praise for the vehicle just moments after landing on the lunar surface: “Just like flying the LLTV. Piece of cake.” Young reiterated during the postflight debriefs that “from 200 feet on down, I never looked in the cockpit. It was just like flying the LLTV.” Apollo 17 Commander Eugene A. Cernan stated in the postflight debrief that “the most significant part of the final phases from 500 feet down, … was that it was extremely comfortable flying the bird. I contribute (sic) that primarily to the LLTV flying operations.”

      Left: Workers move Lunar Landing Research Vehicle-2 from NASA’s Armstrong Flight Research Center for display at the Air Force Test Flight Museum at Edwards Air Force Base. Right: Lunar Landing Training Vehicle-3 on display outside the Teague Auditorium at NASA’s Johnson Space Center in Houston.
      In addition to playing a critical role in the Moon landing program, these early research and test vehicles aided in the development of digital fly-by-wire technology for future aircraft. LLRV-2 is on display at the Air Force Flight Test Museum at Edwards AFB (on loan from AFRC). Visitors can view LLTV-3 suspended from the ceiling in the lobby of the Teague Auditorium at JSC.
      The monograph Unconventional, Contrary, and Ugly: The Lunar Landing Research Vehicle provides an excellent and detailed history of the LLRV.
      Explore More
      11 min read 35 Years Ago: STS-34 Sends Galileo on its Way to Jupiter
      Article 1 week ago 12 min read Five Years Ago: First All Woman Spacewalk
      Article 2 weeks ago 6 min read Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...