Jump to content

ESA advances Vega rocket evolution beyond 2025


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:03:02 From the arrival of Earth-obversation satellite Sentinel-2C in July 2024 and the first fit-check  to launch on the from Europe’s Spaceport in French Guiana, this timelapse shows how the third Sentinel 2 satellite was prepared for launch. The last Vega rocket, flight VV24, lifted off on 5 September at 03:50 CEST (4 September 22:50 local time).
      Sentinel-2C will provide high-resolution data that is essential to Copernicus – the Earth observation component of the European Union’s Space programme. Developed, built and operated by ESA, the Copernicus Sentinel-2 mission provides high-resolution optical imagery for a wide range of applications including land, water and atmospheric monitoring.
      The mission is based on a constellation of two identical satellites flying in the same orbit but 180° apart: Sentinel-2A and Sentinel-2B. Together, they cover all of Earth’s land and coastal waters every five days. Once Sentinel-2C is operational, it will replace its predecessor, Sentinel-2A, following a brief period of tandem observations. Sentinel-2D will eventually take over from Sentinel-2B.
      Sentinel-2C was the last liftoff for the Vega rocket – after 12 years of service this was the final flight, the original Vega is being retired to make way for an upgraded Vega-C.
      Access the related broadcast quality video material.
      View the full article
    • By NASA
      The X-15 hypersonic rocket-powered aircraft, built by North American Aviation (NAA), greatly expanded our knowledge of flight at speeds exceeding Mach 6 and altitudes above 250,000 feet. A joint project among NASA, the U.S. Air Force, and the U.S. Navy, the X-15’s first powered flight took place on Sept. 17, 1959, at the Flight Research Center, now the Armstrong Flight Research Center, at Edwards Air Force Base (AFB) in California. NAA chief test pilot A. Scott Crossfield piloted this flight and other early test flights before NASA and the Air Force took ownership of the aircraft. Between 1959 and 1968, 12 pilots completed 199 missions and achieved ever higher speeds and altitudes, knowledge and experience that later influenced the development of future programs such as the space shuttle. 

      Left: During its October 1958 rollout ceremony at the North American Aviation (NAA) facility in Los Angeles, NAA pilot A. Scott Crossfield poses in front of the X-15-1. Right: Rollout of X-15-2 at the NAA facility in February 1959. 
      The origins of the X-15 date to 1952, when the Committee on Aerodynamics of the National Advisory Committee for Aeronautics (NACA) adopted a resolution to expand their research portfolio to study flight at altitudes between 12 and 50 miles and Mach numbers between 4 and 10. The Air Force and Navy agreed and conducted joint feasibility studies at NACA’s field centers. In 1955, the Air Force selected North American Aviation (NAA), Los Angeles, to build three X-15 hypersonic aircraft.  
      On Oct. 1, 1958, the new National Aeronautics and Space Administration (NASA) incorporated the NACA centers and inherited the X-15 project. Two weeks later, on Oct. 15, 1958, the rollout of the first of the three aircraft took place at NAA’s Los Angeles facility where several of the early X-15 pilots, including Crossfield, attended. After the ceremony, workers wrapped the aircraft, placed it on a flatbed truck, and drove it overnight to the High Speed Flight Station, renamed by NASA the Flight Research Center in September 1959, where all the X-15 flights took place. Before this first aircraft took to the skies, NAA rolled out X-15-2 on Feb. 27, 1959. The X-15-3 rounded out the small fleet in early 1960. 

      Aerial view of the Flight Research Center, now NASA’s Armstrong Flight Research Center, at Edwards Air Force Base, California, with one of the B-52 carrier aircraft at left and an X-15 at right. Image credit: courtesy JD Barnes Collection. 

      Left: Diagram showing the two main profiles used by the X-15, either for altitude or speed. Right: The twin XLR-11 engines, left, and the more powerful XLR-99 engine used to power the X-15. 
      Like earlier X-planes, a carrier aircraft, in this case a modified B-52 Stratofortress, released the 34,000-pound X-15 at an altitude of 45,000 feet to conserve its fuel for the research mission. Flights took place within the High Range, a flight corridor extending from Wendover AFB in Utah to the Rogers Dry Lake landing zone adjacent to Edwards AFB, with emergency landing zones along the way. Typical research missions lasted eight to 12 minutes and followed either a high-altitude or a high-speed profile following launch from the B-52 and ignition of the X-15’s rocket engine. After burnout of the engine, the pilot guided the aircraft to an unpowered landing on the lakebed runway. To withstand the high temperatures during hypersonic flight and reentry, the X-15’s outer skin consisted of a then-new nickel-chrome alloy called Inconel-X. Because traditional aerodynamic surfaces used for flight control while in the atmosphere do not work in the near vacuum of space, the X-15 used its Ballistic Control System thrusters for attitude control while flying outside the atmosphere.  NAA substituted eight smaller XLR-11 engines that produced only 16,000 pounds of thrust because of delays in the development of the 57,000-pound thrust XLR-99 rocket engine, built specifically for the X-15, For the first 17 months of test flights, the X-15 remained significantly underpowered. NAA chief pilot Crossfield had the primary responsibility for carrying out the initial test flights of the X-15 before handover of the aircraft to NASA and the Air Force. 

      Left: Flight profile of the first unpowered glide test flight of the X-15. Right: A. Scott Crossfield pilots the X-15 during its first unpowered glide test flight in June 1959. 
      With Crossfield at the controls of X-15-1, the first captive flight during which the X-15 remained attached to the B-52’s wing, took place on March 10, 1959. Crossfield completed the first unpowered glide flight of X-15-1 on June 8, the flight lasting just five minutes. 

      Left: The B-52 carrier aircraft taxis on the runway at Edwards Air Force Base in California, with the X-15 and pilot A. Scott Crossfield ready to perform the first powered flight of the hypersonic research aircraft. Right: The B-52 carries the X-15 and Crossfield to the drop altitude. 

      Left: Pilot A. Scott Crossfield is visible in the cockpit of the X-15 shortly before the release from the B-52 carrier aircraft. Image credit: courtesy North American Aviation. Right: The X-15 dumps excess fuel just prior to the drop. 


      Left: The X-15 drops from the B-52 carrier aircraft to begin its first powered flight. Middle: The view from the B-52 as the X-15 drops away. Right: Pilot A. Scott Crossfield has ignited all eight of the X-15’s engines to begin the powered flight. 

      Left: View taken from a chase plane of the X-15 during its glide to the lakebed following its first powered flight. Middle: Pilot A. Scott Crossfield brings the X-15 to a smooth touchdown on the lakebed runway at Edwards Air Force Base in California. Image credit: courtesy North American Aviation. Right: Crossfield hops out of the cockpit at the conclusion of the X-15’s first successful powered flight. 
      On Sept. 17, at the controls of X-15-2, Crossfield completed the first powered flight of an X-15. Firing all eight of the XLR-11 engines for 224 seconds, he reached a speed of Mach 2.11, or 1,393 miles per hour, and an altitude of 52,341 feet. Overcoming a few hardware problems, he brought the aircraft to a successful landing after a flight lasting just over nine minutes and traveling 88 miles. During 12 more flights, Crossfield expanded the aircraft’s flight envelope to Mach 2.97 and 88,116 feet while gathering important data on its flying characteristics. His last three flights used the higher thrust XLR-99 engine, the one designed for the aircraft. Crossfield’s 14th flight on Dec. 6, 1960, marked the end of the contracted testing program, and North American turned the X-15 over to the Air Force and NASA. 

      Standing between the first two aircraft, North American Aviation chief test pilot A. Scott Crossfield, left, symbolically hands over the keys to the X-15 to U.S. Air Force pilot Robert M. White and NASA pilot Neil A. Armstrong at the conclusion of the contracted flight test program. Image credit: courtesy North American Aviation. 

      Left: Chief NASA X-15 pilot Joseph “Joe” A. Walker following his altitude record-setting flight in August 1963. Middle left: Air Force pilot William J. “Pete” Knight following his speed record-setting flight in October 1967. Middle right: NASA pilot Neil A. Armstrong stands next to an X-15. Right: Air Force pilot Joe H. Engle following a flight aboard X-15A-2 in December 1965. 
      Over nine years, Crossfield and 11 other pilots – five NASA, five U.S. Air Force, and one U.S. Navy – completed a total of 199 flights of the X-15, gathering data on the aerodynamic and thermal performance of the aircraft flying to the edge of space and returning to Earth. The pilots also conducted a series of experiments, taking advantage of the plane’s unique characteristics and flight environment. NASA chief pilot Joseph “Joe” A. Walker flew the first of his 25 flights in March 1960. On his final flight on Aug. 22, 1963, he took X-15-3 to an altitude of 354,200 feet, or 67.1 miles, the highest achieved in the X-15 program, and a record for piloted aircraft that stood until surpassed during the final flight of SpaceShipOne on Oct. 4, 2004.  
      On Oct. 3, 1967, Air Force pilot William J. “Pete” Knight flew X-15A-2, with fully fueled external tanks, to an unofficial speed record for a piloted winged vehicle of Mach 6.70, or 4,520 miles per hour. The mark stood until surpassed during the reentry of space shuttle Columbia on April 14, 1981. NASA pilot Neil A. Armstrong and Air Force pilot Joe H. Engle flew the X-15 before joining NASA’s astronaut corps. Armstrong took to the skies seven times in the X-15 prior to becoming an astronaut, where he flew the Gemini VIII mission in 1966 and took humanity’s first steps on the Moon in July 1969. Engle has the unique distinction as the only person to have flown both the X-15 (16 times) and the space shuttle (twice in the atmosphere and twice in space). Of the first powered X-15 flight, Engle said, it “was a real milestone in a program that we still benefit from today.” 
      Explore More
      3 min read NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC
      Article 3 hours ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 1 day ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 7 days ago View the full article
    • By Space Force
      Scheduled for next year, Schriever Wargame 2025 is a multi-national exercise designed to explore critical space issues and advance space support within terrestrial military operations, with a focus on deterring and defending against adversaries in an increasingly congested space environment.

      View the full article
    • By European Space Agency
      The Copernicus Sentinel-2C satellite is ready for liftoff! Tune in to ESA WebTV on 4 September from 03:30 CEST to watch the satellite soar into space on the last Vega rocket to be launched from Europe’s Spaceport in Kourou, French Guiana. Sentinel-2C is scheduled to liftoff at 03:50 CEST.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Student Launch, a STEM competition, officially kicks off its 25th anniversary with the 2025 handbook. By Wayne Smith
      NASA’s Student Launch competition kicks off its 25th year with the release of the 2025 handbook, detailing how teams can submit proposals by Wednesday, Sept. 11, for the event scheduled next spring near NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Student Launch is an annual competition challenging middle school, high school, and college students to design, build, test, and launch a high-powered amateur rocket with a scientific or engineering payload. After a team is selected, they must meet documentation milestones and undergo detailed reviews throughout the school year.
      Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon.
      As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The 2024 challenge tasked teams with safely deploying a lander mid-air for a group of four STEMnauts using metrics to support a survivable landing. The lander had to be deployed without a parachute and had a minimum weight limit of five pounds.
      “This year, we’re shifting the focus to communications for the payload challenge,” said John Eckhart, technical coordinator for Student Launch at Marshall. “The STEMnaut ‘crew’ must relay real-time data to the student team’s mission control. This helps connect Student Launch with the Artemis missions when NASA lands astronauts on the Moon.”
      Thousands of students participated in the 2024 Student Launch competition – making up 70 teams representing 24 states and Puerto Rico. Teams launched their rockets to an altitude between 4,000 and 6,000 feet, while attempting to make a successful landing and executing the payload mission. The University of Notre Dame was the overall winner of the 2024 event, which culminated with a launch day open to the public.
      Student Launch began in 2000 when former Marshall Director Art Stephenson started a student rocket competition at the center. It started with just two universities in Huntsville competing – Alabama A&M University and the University of Alabama in Huntsville – but has continued to soar. Since its inception, thousands of students have participated in the agency’s STEM competition, with many going on to a career with NASA.
      “This remarkable journey, spanning a quarter of a century, has been a testament to the dedication, ingenuity, and passion of countless students, educators, and mentors who have contributed to the program’s success,” Eckhart said. “NASA Student Launch has been at the forefront of experiential education, providing students from middle school through university with unparalleled opportunities to engage in real-world engineering and scientific research. The program’s core mission – to inspire and cultivate the next generation of aerospace professionals and space explorers – has not only been met but exceeded in ways we could have only dreamed of.”
      To encourage students to pursue degrees and careers in STEM (science, technology, engineering, and math), Marshall’s Office of STEM Engagement hosts Student Launch, providing them with real-world experiences. Student Launch is one of NASA’s nine Artemis Student Challenges – a variety of activities that expose students to the knowledge and technology required to achieve the goals of Artemis. 
      In addition to the NASA Office of STEM Engagement’s Next Generation STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition. 
      “These bright students rise to a nine-month challenge for Student Launch that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      For more information about Student Launch, please visit: 
      https://www.nasa.gov/studentlaunch
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Aug 29, 2024 LocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      27 min read The Marshall Star for August 28, 2024
      Article 2 days ago 4 min read NASA Expands Human Exploration Rover Challenge to Middle Schools
      Article 2 days ago 3 min read NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...