Members Can Post Anonymously On This Site
NASA to Brief Early Science from Perseverance Mars Rover
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.Josh Valcarcel A core component of Gateway, humanity’s first space station around the Moon, is now on American soil and one step closer to launch. In lunar orbit, Gateway will support NASA’s Artemis campaign to return humans to the Moon and chart a path of scientific discovery toward the first crewed missions to Mars.
Gateway’s first pressurized module and one of its two foundational elements, HALO (Habitation and Logistics Outpost), arrived in Arizona on April 1. Fresh off a transatlantic journey from Thales Alenia Space in Turin, Italy, the structure will undergo final outfitting at Northrop Grumman’s integration and test facility before being integrated with Gateway’s Power and Propulsion Element at NASA’s Kennedy Space Center in Florida. The pair of modules will launch together on a SpaceX Falcon Heavy rocket.
Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.NASA/Josh Valcarcel Gateway’s HALO will provide Artemis astronauts with space to live, work, conduct scientific research, and prepare for missions to the lunar surface. It will offer command and control, data handling, energy storage, electrical power distribution, thermal regulation, and communications and tracking via Lunar Link, a high-rate lunar communication system provided by ESA (European Space Agency). The module will include docking ports for visiting vehicles such as NASA’s Orion spacecraft, lunar landers, and logistics modules. It will also support both internal and external science payloads, enabling research and technology demonstrations in the harsh deep space environment.
Built with industry and international partners, Gateway will support sustained exploration of the Moon, serve as a platform for science and international collaboration, and act as a proving ground for the technologies and systems needed for future human missions to Mars.
Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.NASA/Josh Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.NASA/Josh Valcarcel At the Thales Alenia Space facility in Turin, Italy, technicians prepare Gateway’s HALO (Habitation and Logistics Outpost) for transport. The module’s primary structure, fabricated by Thales Alenia Space, will travel to Northrop Grumman’s facility in Gilbert, Arizona, for final outfitting ahead of its launch to lunar orbit. Thales Alenia Space At the Thales Alenia Space facility in Turin, Italy, technicians prepare Gateway’s HALO (Habitation and Logistics Outpost) for transport. The module’s primary structure, fabricated by Thales Alenia Space, will travel to Northrop Grumman’s facility in Gilbert, Arizona, for final outfitting ahead of its launch to lunar orbit. Thales Alenia Space At the Thales Alenia Space facility in Turin, Italy, technicians prepare Gateway’s HALO (Habitation and Logistics Outpost) for transport. The module’s primary structure, fabricated by Thales Alenia Space, will travel to Northrop Grumman’s facility in Gilbert, Arizona, for final outfitting ahead of its launch to lunar orbit. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) departs Italy en route to Arizona, where it will undergo final outfitting at Northrop Grumman’s facility in Gilbert ahead of its launch to lunar orbit. The module’s primary structure was fabricated by Thales Alenia Space in Turin. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) departs Italy en route to Arizona, where it will undergo final outfitting at Northrop Grumman’s facility in Gilbert ahead of its launch to lunar orbit. The module’s primary structure was fabricated by Thales Alenia Space in Turin. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) departs Italy en route to Arizona, where it will undergo final outfitting at Northrop Grumman’s facility in Gilbert ahead of its launch to lunar orbit. The module’s primary structure was fabricated by Thales Alenia Space in Turin. Thales Alenia Space Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting.Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Gateway’s HALO (Habitation and Logistics Outpost) arrives in Mesa, Arizona, after traveling from Italy, where Thales Alenia Space fabricated its primary structure. Delivered by cargo aircraft to Phoenix-Mesa Gateway Airport, HALO will be transported to Northrop Grumman’s facility in Gilbert for final outfitting. Josh Valcarcel – NASA – JSC Download additional high-resolution images of HALO here.
Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
Details
Last Updated Apr 04, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Humans in Space Johnson Space Center Explore More
2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 1 month ago 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
NASA and its international partners are making progress on Gateway – the lunar space station…
Article 1 month ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
Article 2 months ago Keep Exploring Discover More Topics From NASA
Humans In Space
Orion Spacecraft
Extravehicular Activity and Human Surface Mobility
Human Landing System
View the full article
-
By European Space Agency
Video: 00:08:54 Meet Amelie Schoenenwald— biotechnologist, business expert, and PhD in structural biology. Whether in the lab or the great outdoors, she thrives in extreme environments, ready to embrace the adventure of ESA’s Astronaut Reserve.
In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
This interview was recorded in November 2024.
Learn more about Amelie’s favourite space mission.
You can listen to this episode on all major podcast platforms.
Keep exploring with ESA Explores!
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Martian dust devil can be seen consuming its smaller friend in this short video made of images taken at the rim of Jezero Crater by NASA’s Perseverance Mars rover on Jan. 25, 2025. NASA/JPL-Caltech/SSI The six-wheeled explorer recently captured several Red Planet mini-twisters spinning on the rim of Jezero Crater.
A Martian dust devil can be seen consuming a smaller one in this short video made of images taken by a navigation camera aboard NASA’s Perseverance Mars rover. These swirling, sometimes towering columns of air and dust are common on Mars. The smaller dust devil’s demise was captured during an imaging experiment conducted by Perseverance’s science team to better understand the forces at play in the Martian atmosphere.
When the rover snapped these images from about 0.6 miles (1 kilometer) away, the larger dust devil was approximately 210 feet (65 meters) wide, while the smaller, trailing dust devil was roughly 16 feet (5 meters) wide. Two other dust devils can also be seen in the background at left and center. Perseverance recorded the scene Jan. 25 as it explored the western rim of Mars’ Jezero Crater at a location called “Witch Hazel Hill.”
“Convective vortices — aka dust devils — can be rather fiendish,” said Mark Lemmon, a Perseverance scientist at the Space Science Institute in Boulder, Colorado. “These mini-twisters wander the surface of Mars, picking up dust as they go and lowering the visibility in their immediate area. If two dust devils happen upon each other, they can either obliterate one another or merge, with the stronger one consuming the weaker.”
While exploring the rim of Jezero Crater on Mars, NASA’s Perseverance rover captured new images of multiple dust devils in January 2025. These captivating phenomena have been documented for decades by the agency’s Red Planet robotic explorers. NASA/JPL-Caltech/LANL/CNES/CNRS/INTA-CSIC/Space Science Institute/ISAE-Supaero/University of Arizona Science of Whirlwinds
Dust devils are formed by rising and rotating columns of warm air. Air near the planet’s surface becomes heated by contact with the warmer ground and rises through the denser, cooler air above. As other air moves along the surface to take the place of the rising warmer air, it begins to rotate. When the incoming air rises into the column, it picks up speed like a spinning ice skater bringing their arms closer to their body. The air rushing in also picks up dust, and a dust devil is born.
“Dust devils play a significant role in Martian weather patterns,” said Katie Stack Morgan, project scientist for the Perseverance rover at NASA’s Jet Propulsion Laboratory in Southern California. “Dust devil study is important because these phenomena indicate atmospheric conditions, such as prevailing wind directions and speed, and are responsible for about half the dust in the Martian atmosphere.”
NASA’s Viking 1 orbiter captured this Martian dust devil casting a shadow on Aug. 1, 1978. During the 15-second interval between the two images, the dust devil moved toward the northeast (toward the upper right) at a rate of about 59 feet (18 meters) per second. NASA/JPL-Caltech/MSSS Since landing in 2021, Perseverance has imaged whirlwinds on many occasions, including one on Sept. 27, 2021, where a swarm of dust devils danced across the floor of Jezero Crater and the rover used its SuperCam microphone to record the first sounds of a Martian dust devil.
NASA’s Viking orbiters, in the 1970s, were the first spacecraft to photograph Martian dust devils. Two decades later, the agency’s Pathfinder mission was the first to image one from the surface and even detected a dust devil passing over the lander. Twin rovers Spirit and Opportunity managed to capture their fair share of dusty whirlwinds. Curiosity, which is exploring a location called Mount Sharp in Gale Crater on the opposite side of the Red Planet as Perseverance, sees them as well.
Capturing a dust devil image or video with a spacecraft takes some luck. Scientists can’t predict when they’ll appear, so Perseverance routinely monitors in all directions for them. When scientists see them occur more frequently at a specific time of day or approach from a certain direction, they use that information to focus their monitoring to try to catch additional whirlwinds.
“If you feel bad for the little devil in our latest video, it may give you some solace to know the larger perpetrator most likely met its own end a few minutes later,” said Lemmon. “Dust devils on Mars only last about 10 minutes.”
More About Perseverance
A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-047
Share
Details
Last Updated Apr 03, 2025 Related Terms
Perseverance (Rover) Curiosity (Rover) Jet Propulsion Laboratory Mars Mars 2020 Mars Exploration Rovers (MER) Mars Pathfinder Viking Explore More
3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
Article 3 days ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read NASA Langley’s Legacy of Landing
The first image of the Moon taken by the cameras on the Lunar Orbiter in 1966. Credits: NASA Landing safely on the surface of another planetary body, like the Moon or Mars, is one of the most important milestones of any given space mission. From the very beginning, NASA’s Langley Research Center has been at the heart of the entry, descent and landing (EDL) research that enables our exploration. Today, NASA Langley’s legacy of landing continues at the forefront of present day lunar missions and as NASA prepares for future travel to more distant worlds.
Project Mercury: 1958
Project Mercury was the United States’ first human-in-space program, led by NASA’s Space Task Group located at NASA Langley. There were five major programs of study and experimentation.
An airdrop study that helped us understand the characteristics of the Mercury capsule as it returned to Earth. A group of study focused on the escape systems, ultimately becoming known as the launch abort system. Exhaustive wind-tunnel studies of the blunt-nosed capsule design and its aerodynamic stability at various altitudes and speeds and angles of reentry, all with a focus on making the capsule safe and stable. A study on the problem of landing impact, resulting in the development of absorption systems that minimized the shock of impact to the capsule’s pilot. Studies into the use of drogue parachutes and their characteristics at high altitudes and speeds, ensuring that they would be able to stabilize and slow the capsule’s descent for a safe landing. All of this research went on to inform the subsequent Gemini and Apollo programs. All of this research went on to inform the subsequent Gemini and Apollo programs.
Apollo Program: 1962
In 1961, President John F. Kennedy committed to putting Americans on the surface of the Moon and shortly after that historic declaration, NASA’s Apollo program was born. In the years that followed, the original team of NASA astronauts completed their basic training at NASA Langley’s Lunar Landing Research Facility (LLRF). When Apollo 11 successfully landed the first humans on the Moon in 1969, NASA Langley had played a pivotal role in the monumental success.
Lunar Orbiter: 1966
The Lunar Orbiter missions launched with the purpose of mapping the lunar surface and identifying potential landing sites ahead of the Apollo landings. From 1966 to 1967, the five successful Lunar Orbiter missions, led and managed by Langley Research Center, resulted in 99% of the moon photographed and a suitable site selected for the upcoming human landings.
Viking: 1976
After the success of Apollo, NASA set its sights further across the solar system to Mars. Two Viking missions aimed to successfully place landers on the Red Planet and capture high resolution images of the Martian surfaces, assisting in the search for life. Langley Research Center was chosen to lead this inaugural Mars mission and went on to play key roles in the missions to Mars that followed.
HIAD: 2009 – Present
Successful landings on Mars led to more ambitious dreams of landing larger payloads, including those that could support future human exploration. In order to land those payloads safely, a new style of heat shield would be needed. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology was positioned as an answer to the payload problem, enabling missions to use inflatable heat shields to slow down and protect a payload as it enters a planet’s atmosphere at hypersonic speeds.
IRVE – 2009-2012
Two successful Inflatable Reentry Vehicle Experiments (IRVE) proved the capability of inflatable heat shield technology and opened the door for larger iterations.
LOFTID – 2022
The Low Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) followed in the footsteps of its predecessor IRVE with a larger aeroshell that could be deployed to a scale much larger than the shroud. The 2022 successful test of this technology further proved the capability of HIAD technology.
MEDLI 1 and 2: 2012 & 2020
As a part of the Mars Science Laboratory (MSL) mission, NASA Langley’s Mars Entry, Descent and Landing Instrument (MEDLI) was designed to gather data from the MSL entry vehicle’s heatshield during its entry and descent to the surface of Mars. MEDLI2 expanded on that groundbreaking data during the Mars 2020 mission which safely landed the Perseverance rover after successfully entering the planet’s arid atmosphere, and enabling improvements on the design for future entry systems.
Curiosity Rover
Curiosity was the largest and most capable rover ever sent to Mars when it launched in 2011. Leading up the mission, Langley engineers performed millions of simulations of the entry, descent and landing phase — or the so-called “Seven Minutes of Terror” — that determines success or failure. Curiosity continues to look for signs that Mars once was – or still is – a habitable place for life as we know it.
CLPS: 2023 – Present
The Commercial Lunar Payload Services initiative takes the Artemis mission further by working with commercial partners to advance the technology needed to return humans to the Moon and enable humanity to explore Mars.
NDL
Navigation Doppler Lidar (NDL) technology, developed at Langley Research Center, uses lasers to assist spacecraft in identifying safe locations to land. In 2024, NDL flew on the Intuitive Machines’ uncrewed Nova-C lander, with its laser instruments designed to measure velocity and altitude to within a few feet. While NASA planetary landers have traditionally relied on radar and used radio waves, NDL technology has proven more accurate and less heavy, both major benefits for cost and space savings as we continue to pursue planetary missions.
SCALPSS
Like Lunar Orbiter and the Viking missions before it, Stereo Cameras for Lunar Plume Surface Studies (SCALPSS) set out to better understand the surface of another celestial body. These cameras affixed to the bottom of a lunar lander focus on the interaction between the lander’s rocket plumes and the lunar surface. The SCALPSS 1.1 instrument captured first-of-its-kind imagery as the engine plumes of Firefly’s Blue Ghost lander reached the Moon’s surface. These images will serve as key pieces of data as trips to the Moon increase in the coming years.
About the Author
Angelique Herring
Share
Details
Last Updated Apr 03, 2025 EditorAngelique HerringContactJoseph Scott Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
General Langley Research Center Explore More
4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
Article 3 weeks ago 4 min read Six NASA Instruments Will Fly to Moon on Intuitive Machines Lander
Article 1 year ago 4 min read Impact Story: Navigation Doppler Lidar
Article 2 years ago 7 min read Langley’s Contributions to Artemis
Article 3 years ago 1 min read 2024 Annual Report Highlights Langley’s Wonder at Work
Article 2 months ago 12 min read 60 Years Ago: NASA Approves the Lunar Orbiter Program
Article 2 years ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 min read
Citizen Scientists Use NASA Open Science Data to Research Life in Space
2023 Workshop of Analysis Working Group members, Washington, D.C., November 14, 2023. Now, you are invited to join their quest to understand how life can thrive in deep space! Want to learn more first? Join our live virtual event April 17 at 3pm Eastern Time to hear an overview of the OSDR AWG’s operations. Photo: NASA OSDR Team How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite volunteers from all backgrounds to help answer this question. Request to join these citizen science groups to help investigate how life adapts to space environments, exploring topics like radiation effects, microgravity’s impact on human and plant health, and how microbes change in orbit.
Currently, nine Analysis Working Groups (AWGs) hold monthly meetings to advance their specific focus areas. Participants collaborate using an online platform, the AWG “Forum-Space”, where they connect with peers and experts, join discussions, and contribute to over 20 active projects.
The AWGs work with data primarily from the NASA Open Science Data Repository (OSDR), a treasure trove of spaceflight data on physiology, molecular biology, bioimaging, and much more. For newcomers, there are tutorials and a comprehensive paper covering all aspects of the repository and the AWG community. You can explore 500+ studies, an omics multi-study visualization portal, the environmental data app, and RadLab, a portal for radiation telemetry data. (“Omics” refers to fields of biology that end in “omics,” like “genomics”.)
Each of the nine AWGs has a Lead who organizes their group and holds monthly virtual meetings. Once you join, make sure to connect with the Lead and get on the agenda so you can introduce yourself. Learn more about the AWGs here.
Have an idea for a new project? Propose a new project and help lead it! From data analysis and visualization to shaping data standards and conducting literature meta-analyses, there’s a place for everyone to contribute. Request to join, and together, we can address a great challenge for humanity: understanding and enabling life to thrive in deep space!
Want to learn more?
On April 17 at 3pm Eastern Time, the NASA Citizen Science Leaders Series is hosting an virtual event with Ryan Scott about these Analysis Working Groups and their work. Ryan is the Science Lead for the Ames Life Sciences Data Archive and the liaison between the Open Data Science Repository and the Analysis Working Groups. Click here to register for this event!
Share
Details
Last Updated Apr 01, 2025 Related Terms
Citizen Science Biological & Physical Sciences Explore More
9 min read Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper
Article
2 weeks ago
2 min read Redshift Wranglers Reach Remarkable Milestones
Article
4 weeks ago
2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
Article
4 weeks ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.