Jump to content

Recommended Posts

Posted
Media_briefing_Eutelsat_Quantum_to_be_la Video: 00:41:36

The reconfigurable satellite will launch this summer from the European Space Port in French Guiana. Eutelsat Quantum will be capable of being reprogrammed after launch. It will provide data, communications and entertainment exactly where and when it is wanted. Watch the replay of this Q&A with the media to learn more and hear from the key players behind its development.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance. NASA/ Krisdon Manecke NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to attend its observance of the agency’s Day of Remembrance at 9:30 a.m. CST Thursday, Jan. 23, in the lobby of Building 4221.
      Day of Remembrance honors the members of the NASA family who lost their lives while furthering the cause of exploration and discovery. 
      The event will include brief remarks from NASA Marshall leaders, followed by a candle lighting and moment of silence for the crews of Apollo 1 and space shuttles Challenger and Columbia. Speakers will include:
      Larry Leopard, associate director, technical. Bill Hill, director, Office of Safety and Mission Assurance. Media interested in attending the event must confirm by 12 p.m. Wednesday, Jan. 22, with Molly Porter at: molly.a.porter@nasa.gov.
      The agency will also pay tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at: 
      https://www.nasa.gov/dor/
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Jan 21, 2025 EditorBeth RidgewayContactMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 5 days ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
      Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By USH
      Quantum computing, a transformative field leveraging quantum mechanics, has the potential to solve complex problems far beyond the reach of classical computers. While it promises significant advancements, it also poses risks, such as breaking cryptographic codes, threatening global data security. 

      For example: At NASA's Quantum Artificial Intelligence Laboratory (QuAIL), experiments revealed unprecedented computational power and successfully solved the unsolvable problem. However, the quantum computer began generating independent and unconventional outputs, leading to speculation that it could think for itself or even connect with extraterrestrial intelligence. Concerned about the implications, NASA halted its quantum computing project in 2023, though some believe the research continued in secret. 
      Separately, researchers have hypothesized that advanced extraterrestrial civilizations might use black holes as quantum computers for computation and communication. highlighting the mysterious potential of these quantum systems to explore phenomena beyond Earthly understanding. 
      A fictional scenario (watch video below) illustrates the dangers of quantum technology spiraling out of control: 
      A mysterious data transfer lights up NSA monitors at 3 AM. Within hours, hospital records flash across Times Square billboards. Dating app messages spill onto every screen in the city. 
      Bank accounts vanish. Traffic lights freeze. Autonomous vehicles crash through shopping malls. Intelligence agencies scramble as decades of encrypted messages suddenly unlock. Someone or something has broken the unbreakable - the mathematical foundations that protect everything from banking passwords to nuclear launch codes. 
      The quantum apocalypse arrives years ahead of schedule. But as chaos spreads, patterns start to surface. The timing seems too perfect, the targets too precise. 
      Deep beneath the Pentagon, analysts notice something strange: some messages were decrypted months ago. The chaos isn't random - it's cover for something bigger.
        View the full article
    • By European Space Agency
      The first IRIDE satellite – the Pathfinder Hawk – is now in orbit around Earth after lifting off on a SpaceX Falcon 9 rocket from the Vandenberg Space Force Base in California on 14 January.
      As its ‘Pathfinder’ name suggests, this new microsatellite is a prototype for one of the six IRIDE constellations, which are tailored to provide information for a wide range of environmental, emergency and security services for Italy.
      View the full article
    • By NASA
      NASA’s SPHEREx observatory will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors.Credit: BAE Systems Media accreditation is open for the launch of two NASA missions that will explore the mysteries of our universe and Sun.
      The agency is targeting late February to launch its SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory, a space telescope that will create a 3D map of the entire sky to help scientists investigate the origins of our universe. NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study origins of the Sun’s outflow of material, or the solar wind, also will ride to space with the telescope.
      NASA and SpaceX will launch the missions aboard the company’s Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California.

      Accredited media will have the opportunity to participate in a series of prelaunch briefings and interviews with key mission personnel, including a science briefing the week of launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
      Media interested in covering the launch must apply for media accreditation. The application deadline for U.S. citizens is 11:59 p.m. EST, Thursday, Feb. 6, while international media without U.S. citizenship must apply by 11:59 p.m., Monday, Jan. 20.

      NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the newsroom at NASA’s Kennedy Space Center in Florida at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      Updates about spacecraft launch preparations are available on the agency’s SPHEREx blog and PUNCH blog.

      The SPHEREx mission will observe hundreds of millions of stars and galaxies in infrared light, a range of wavelengths not visible to the human eye. With this map, SPHEREx will enable scientists to study inflation, or the rapid expansion of the universe a fraction of a second after the big bang. The observatory also will measure the collective glow from galaxies near and far, including light from hidden galaxies that individually haven’t been observed, and look for reservoirs of water, carbon dioxide, and other key ingredients for life in our home galaxy.
      Launching as a rideshare with SPHEREx, the agency’s PUNCH mission is made up of four suitcase-sized satellites that will spread out around Earth’s day-night line to observe the Sun and space with a combined field of view. Working together, the four satellites will map out the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, or the constant outflow of material from the Sun.

      The SPHEREx observatory is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the agency’s Science Mission Directorate in Washington. The mission principal investigator is based jointly at NASA JPL and Caltech. Formerly Ball Aerospace, BAE Systems built the telescope, supplied the spacecraft bus, and performed observatory integration. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech. The SPHEREx data set will be publicly available.

      The agency’s PUNCH mission is led by Southwest Research Institute’s office in Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the SPHEREx and PUNCH missions.
      For more details about the SPHEREx mission and updates on launch preparations, visit:
      https://science.nasa.gov/mission/spherex
      -end-
      Alise Fisher (SPHEREx)
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Sarah Frazier (PUNCH)
      Goddard Space Flight Center, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Laura Aguiar
      Kennedy Space Center, Florida
      321-593-6245
      laura.aguiar@nasa.gov
      Share
      Details
      Last Updated Jan 13, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Goddard Space Flight Center Heliophysics Jet Propulsion Laboratory Kennedy Space Center Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum GravityNASA/Selim Shahriar Selim Shahriar
      Northwestern University, Evanston
      Progress in physics has largely been driven by the development and verification of new theories that unify different fundamental forces of nature. For example, Maxwell revolutionized physics with his unified theory of electricity and magnetism, and the Standard Model of particle physics provides a consistent description of all fundamental forces (electromagnetic, strong, and weak) except for gravity. The major barrier to completing the quest for unification is that General Relativity (GR), the current theory of gravity, cannot be reconciled with QM. Theories of Quantum Gravity (TQG), which are yet untested, prescribe modifications of both GR and QM in a manner that makes them consistent with each other. Tests of TQG represent arguably the greatest challenge facing our understanding of the Universe. The most promising way to test TQG is to search for violation of the Equivalence Principle (EP), a fundamental tenet of GR which states that all objects experience the same acceleration in a gravitational field. Violation of EP is characterized by a nonzero Eotvos parameter, Eta, defined as the ratio of the relative acceleration to the mean acceleration experienced by two objects with different inertial masses in a gravitational field. EP violations at the level of Eta < 10^(-18) arise in many versions of TQG (e.g., string theory). The most precise test of the EP to date has been carried out under the space-borne MICROSCOPE experiment employing classical accelerometers, constraining the value of Eta to <1.5×10^(-15). We propose to investigate the use of a radically new method that leverages quantum entanglement to test the EP with extreme precision, at the level of Eta ~ 10^(-20), using a space-borne platform. This method is described in a recent paper by us (PRD 108, 024011, ’23). It makes use of simultaneous Schroedinger Cat (SC) state atom interferometers (AIs) with two isotopes of Rb. Consisting of N=10^6 atoms, the SC state, which is a maximally entangled quantum state generated via spin-squeezing of cold atoms in an optical cavity, acts as a single particle, in a superposition of two collective states, enhancing the sensitivity by a factor of ~root(N)=10^3. Such large-N SC states are difficult to create and have not been observed yet, let alone leveraged for precision metrology. In another recent paper, we described a novel protocol, namely the generalized echo squeezing protocol (GESP), to overcome the challenges of creating such a state (PRA 107, 032610, ’23). We will demonstrate the functionality of this method in a testbed to enable a follow-on space-borne mission capable of testing the EP at the level of Eta ~ 10^(-20). If EP violation is observed, the version of TQG that agrees most closely with the result would form the foundation for a complete theory governing the universe, including its birth: the Big Bang. A null result would force physicists to conceive an entirely new approach to addressing the irreconcilability of GR and QM, fundamentally altering the course of theoretical physics. Either outcome would represent one of the greatest developments in our quest for understanding nature. The SC-state AI (SCAI), also holds the promise of revolutionary improvements in the precision of gravitational cartography and inertial navigation, when configured for simultaneous accelerometry and rotation sensing. The sensitivity of such a sensor, for one second averaging time, would be ~0.9 femto-g for accelerometry, and ~0.5 pico-degree/hour for rotation sensing. This would represent an improvement by a factor of ~10^5 over the best conventional accelerometer, and a factor of ~10^4 over the best conventional gyroscopes. As such, the SCAI would find widespread usage in defense as well as non-defense sectors, including deep-space exploration, for inertial navigation. A space-borne SCAI would be able to carry out gravitational cartography with a resolution far greater than that achieved using the GRACE-FO satellites.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...