Members Can Post Anonymously On This Site
Ball of light turns into black sphere over Seattle
-
Similar Topics
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Searching for the Dark in the Light
The Perseverance rover acquired this image of the “Hare Bay” abrasion patch using its SHERLOC WATSON camera (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals, and the Wide Angle Topographic Sensor for Operations and eNgineering), located on the turret at the end of the rover’s robotic arm. This image was acquired on April 18, 2025 (Sol 1479, or Martian day 1,479 of the Mars 2020 mission) at the local mean solar time of 12:53:57. NASA/JPL-Caltech Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
Perseverance has been busy exploring lower “Witch Hazel Hill,” an outcrop exposed on the edge of the Jezero crater rim. The outcrop is composed of alternating light and dark layers, and naturally, the team has been trying to understand the makeup of and relationships between the light and dark layers. A few weeks ago, we sampled one of the light-toned layers, which we discovered was made up of very small clasts, or fragments of rocks or minerals, at “Main River.” Since then, we have learned that the dark layers tend to be composed of larger clasts compared to the light layers, and we’ve been searching for a place to sample this coarser-grained rock type. Sometimes, these coarser-grained rocks also contain spherules, which are of great interest to the science team because they provide clues about the process that formed these layered rocks.
Perseverance first looked at a dark layer at “Puncheon Rock” with an abrasion. We then examined a dark layer at “Wreck Apple,” near “Sally’s Cove,” but we could not identify a suitable surface to abrade. So, while team members searched for other locations to study the coarse-grained units and spherules, Perseverance drove south to “Port Anson.”
Perseverance acquired this image of the “Strong Island” workspace near Port Anson using its onboard Front Left Hazard Avoidance Camera A (https://science.nasa.gov/mission/mars-2020-perseverance/rover-components/#eyes). This image was acquired on April 12, 2025 (Sol 1473, or Martian day 1,473 of the Mars 2020 mission) at the local mean solar time of 12:50:32. NASA/JPL-Caltech Port Anson was intriguing because, from orbit, it showed a clear contact between the light layers of Witch Hazel Hill and a distinct unit below it. And, although the rocks below the Port Anson contact do show interesting compositional differences with those of Witch Hazel Hill, they weren’t the coarse-grained rocks we were looking for. We still performed an abrasion there, at Strong Island, before driving back up north for another attempt at investigating the coarser-grained rocks.
We aimed for “Pine Pond,” which neighbors “Dennis Pond,” to abrade at “Hare Bay.” With the data just coming down over the weekend, the team will be hard at work to figure out if we captured the coarse grains and spherules, and if it is representative of rocks we have seen before or not. The image below is a close-up of this most recent abrasion patch at Hare Bay — what do you think? Stay tuned to find out!
Share
Details
Last Updated Apr 25, 2025 Related Terms
Blogs Explore More
3 min read Sols 4520-4521: Prinzregententorte
Article
6 hours ago
5 min read Sols 4518-4519: Thumbs up from Mars
Article
2 days ago
3 min read Sols 4515-4517: Silver Linings
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72).ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72).
M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy.
The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed.
Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light
This NASA/ESA Hubble Space Telescope image features the globular cluster Messier 72 (M72). ESA/Hubble & NASA, A. Sarajedini, G. Piotto, M. Libralato As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) shared new images that revisited stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
ESA/Hubble released new images of NGC 346, the Sombrero Galaxy, and the Eagle Nebula earlier in the month. Now they are revisiting the star cluster Messier 72 (M72).
M72 is a collection of stars, formally known as a globular cluster, located in the constellation Aquarius roughly 50,000 light-years from Earth. The intense gravitational attraction between the closely packed stars gives globular clusters their regular, spherical shape. There are roughly 150 known globular clusters associated with the Milky Way galaxy.
The striking variety in the color of the stars in this image of M72, particularly compared to the original image, results from the addition of ultraviolet observations to the previous visible-light data. The colors indicate groups of different types of stars. Here, blue stars are those that were originally more massive and have reached hotter temperatures after burning through much of their hydrogen fuel; the bright red objects are lower-mass stars that have become red giants. Studying these different groups help astronomers understand how globular clusters, and the galaxies they were born in, initially formed.
Pierre Méchain, a French astronomer and colleague of Charles Messier, discovered M72 in 1780. It was the first of five star clusters that Méchain would discover while assisting Messier. They recorded the cluster as the 72nd entry in Messier’s famous collection of astronomical objects. It is also one of the most remote clusters in the catalog.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Apr 25, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Globular Clusters Goddard Space Flight Center Star Clusters Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Star Clusters
Hubble’s 35th Anniversary
Hubble’s Night Sky Challenge
View the full article
-
By NASA
4 Min Read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
NASA astronaut Don Pettit is scheduled to return home in mid-April after a seven-month mission aboard the International Space Station as part of Expedition 72. Throughout his stay, Pettit contributed to research that benefits humanity and future space missions.
Pettit also shared what he calls “science of opportunity” to demonstrate how experimenting with our surroundings can help gain a better understanding of how things work. This understanding is perhaps enhanced when art, science, and microgravity come together.
Electrostatic Displays
NASA astronaut Don Pettit demonstrates electrostatic forces using charged water droplets and a knitting needle made of Teflon. This series of overlapping frames displays the unique attraction-repulsion properties of Teflon and charged droplets, similar to how charged particles from the Sun behave when they come in contact with Earth’s magnetic field. Highly energetic particles from space that collide with atoms and molecules in the atmosphere create the aurora borealis.
Specialized Equipment for Superb Science
NASA astronaut Don Pettit snaps an image of the hands of NASA astronauts Nick Hague, left, and Suni Williams inside the Life Science Glovebox, a facility at the International Space Station that separates the science from the scientists, thus protecting both from contamination.
The freezers on the International Space Station are as crucial as its experiment modules, preserving samples for further analysis on Earth. The Minus Eighty-Degree Laboratory Freezer for International Space Station stores samples at ultra-cold temperatures. NASA astronaut Don Pettit used it to freeze thin ice wafers, which he photographed with a polarizing filter to reveal unique crystal structures.
New Tech Roll-Out
NASA astronaut Don Pettit films a time-lapse sequence of Canadarm2 retrieving Materials International Space Station Experiment (MISSE-20-Commercial) samples at the International Space Station. This investigation exposed various experiments to the harsh space environment, such as vacuum, radiation, and extreme temperatures. Findings could help in many areas, from designing more durable materials to advancing quantum communications.
A surge in International Space Station research supports NASA’s exploration efforts at the Moon and beyond, requiring more energy to operate the orbiting laboratory. NASA astronaut Don Pettit photographs new and old solar arrays side by side. The technology used by the International Space Station Roll-Out Solar Arrays (IROSA) on the right was first tested aboard the station in 2017. By 2023, six IROSAs were deployed aboard station, providing a 20-30% increase in power for research and operations. Roll-Out Solar Arrays were also used on NASA’s DART asteroid mission and now are slated for the Gateway lunar outpost, a vital component of Artemis.
Squire for Spacewalks
I am the nameless boy who stays in the confines of the tent helping the Knights suit up for battle. I remain in the airlock, preparing these knights for a walk outside.
Don Pettit
"Space Squire" posted to X
NASA astronaut Don Pettit helped his colleagues suit up for two spacewalks in January. The first spacewalk involved patching the Neutron Star Interior Composition Explorer (NICER), a telescope that measures X-rays from neutron stars and other cosmic objects. Sunlight interference affected data collection, and the patches reduced this issue. On the second spacewalk, astronauts collected samples from the exterior of the International Space Station for ISS External Microorganisms. This investigation examines whether the orbiting laboratory releases microbes, how many, and how far these may travel. Findings could inform the design of future spacecraft, including spacesuits, to limit biocontamination during future space missions.
Photography with a Spin
NASA astronaut Don Pettit photographs “cosmic colors at sunrise.” From 250 miles above, the International Space Station’s orbital path covers most of Earth’s population, offering valuable data and a great opportunity for shooting breathtaking photography.
NASA astronaut Don Pettit leveraged his stay aboard the International Space Station to photograph our planet with an artistic twist.
NASA astronaut Don Pettit wrote on social media about his snapshot of the Mediterranean Sea from the International Space Station, “Sun glint off the Mediterranean Sea (infrared and converted to black and white). When the Sun reflects off the ocean, watery details unseen with normal lighting appear. Small centimeter differences in ocean height become visible, revealing hidden currents.”
NASA astronaut Don Pettit’s photography could contribute to the study of transient luminous events, colorful electrical discharges that occur above thunderstorms. His imagery can be paired with data from the Atmosphere-Space Interactions Monitor (ASIM) and Thor-Davis, a high-speed thunderstorm camera. The combined efforts of crew photography and instruments aboard the International Space Station help scientists better understand thunderstorms and their impacts on Earth’s upper atmosphere.
More of Pettit’s photography can be found on his X profile, @astro_Pettit.
Share
Details
Last Updated Apr 17, 2025 Related Terms
ISS Research Donald R. Pettit Expedition 72 Humans in Space International Space Station (ISS) Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.