Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      A mesmerising audiovisual experience from trip-hop collective Massive Attack that blends an original score with stunning satellite images of Earth was enjoyed by thousands of climate enthusiasts in Liverpool.
      View the full article
    • By USH
      A rare and intriguing phenomenon has been observed in China. On the night of October 27th, Chinese astrophotographer Shengyu Li set up his camera to capture star trails over Mount Xiannairi in Sichuan Province. To his surprise, he recorded mysterious blue flashes accompanying an avalanche. 

      The exact cause of these "blue lights" remains unclear, sparking various theories. Some speculate they could stem from geomagnetic activity, interactions of cosmic rays in the upper atmosphere, or rare atmospheric phenomena like blue jets or elves. However, Li offers another explanation: the flashes might result from triboluminescence—light produced by friction during ice fragmentation. 
      Triboluminescence occurs when certain materials emit light as they are fractured, scratched, or rubbed. This phenomenon happens due to the breaking of chemical bonds or the sudden separation of surfaces, which generates electrical charges. These charges can ionize the surrounding air or excite the material itself, creating visible light. 
      The hypothesis suggests that this event could be an example of triboluminescence. However, it also raises the intriguing possibility of a connection to UFO phenomena, such as orbs or other unexplained lights that have been observed around the world over the years. 
      Hypothesis: The sighting depicts what appears to be a blue light descending onto a snowbank, following the avalanche as it moves downward, and then vanishing before seemingly ascending again.

       Did the avalanche trigger the blue light, or did the blue light crash into the snow, causing the avalanche? 
      Whether this phenomenon is a rare case of triboluminescence, potentially the first instance of it being captured on camera or something linked to unexplained UFO activity, the recording of this light remains a unique and fascinating occurrence. View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before. 
      The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below. 
      “Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study. 
      Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
      “Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
      Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
      This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun. 
      The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
      Irina Kitiashvili
      NASA Scientist
      “The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
      These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data. 
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit: ​
      https://www.nas.nasa.gov/sc24
      For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 21, 2024 Related Terms
      General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
      2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
      Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
      Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
      Article 24 hours ago Keep Exploring Discover More Topics From NASA
      Parker Solar Probe
      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
      Solar Storms and Flares
      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
      Solar System
      Track the Solar Cycle with Sunspots
      Participate in sunspot-counting activities using NASA telescopes or your own.
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-2 image captures the intricate blend of natural, rural and urban landscapes around Kunshan, a city in eastern China. View the full article
    • By NASA
      During National Disability Employment Awareness Month, we celebrate the thousands of employees living with disabilities who contribute to NASA’s mission. By sharing their stories, we highlight the impact people with disabilities have on our organization and the vital role they play in fostering an inclusive workforce at NASA.
      Meghan Daley sits in the Orbiter Processing Facility at NASA’s Kennedy Space Center in Florida during the final days of the Space Shuttle Program. Meghan Daley has spent nearly two decades blazing new trails in robotics. As a project manager in NASA’s Engineering, Software Robotics, and Simulation Division at Johnson Space Center in Houston, she is building simulations that will shape the future of space exploration. 

      From training astronauts with advanced robotic tools to collaborating with the Department of Defense on research simulations, Daley’s work is transforming how humans interact with space, ensuring that every mission is set up for success. 

      Daley oversees key programs at Johnson, including the Generic On-Orbit Robotic Trainer (GROOT), the Robotic OnBoard Trainer, and Dynamics Skills Trainers. These tools are vital to NASA’s mission and are used in both ground-based simulations and real-time space operations. 

      One of Daley’s proudest achievements is launching GROOT, a simulation system that trains astronauts in a variety of robotic operations. From handling the Canadarm2 for spacecraft docking to servicing satellites, GROOT prepares astronauts for tasks like performing maintenance, assembling structures in space, managing cargo, and even coordinating multiple robotic systems.  

      The tool also supports astronauts in mastering robotic inspections, autonomous operations, and emergency procedures, making it indispensable for missions to the Moon and Mars. 

      During a visit by Gen. John W. Raymond to the Systems Engineering Simulator, the general requested an outdated rendezvous and proximity operations simulation for the United States Space Force.  

      Recognizing the limitations of the old system and knowing her team’s capabilities, Daley proposed building a new simulation from scratch to meet their needs. In 2019, GROOT was born and continues to be a critical asset in NASA’s training toolkit. 
      United States Space Force Vice Chief of Space Operations Gen. David D. Thompson observes a demonstration of the Generic On-Orbit Robotic Trainer alongside NASA astronauts and crew members. For Daley, celebrating her identity and culture in the workplace is about advocacy and education. She is passionate about using her voice to promote awareness and understanding, not just for her own experience, but for the benefit of all. 

      “Being a woman in engineering is extremely difficult. However, being a woman with a disability in engineering is even harder,” Daley said. “I have learned how important it is to communicate your ideas, questions, and concerns.” 

      When reflecting on her career, Daley says she cannot pick a favorite project. Each one—from Orion to Gateway to the International Space Station and space shuttle—has deepened her understanding of NASA’s vision.  
      The Robotic OnBoard Trainer onboard the International Space Station in the U.S. Destiny Laboratory. As Daley looks to the future of robotics and human spaceflight, she remains optimistic and passionate about inspiring the next generation of explorers.  

      “Keep your hope and don’t be afraid to ask questions because that is how you learn and become a leader!” she said.  
      View the full article
  • Check out these Videos

×
×
  • Create New...